
JIDE Docking Framework Developer Guide

Contents

PURPOSE OF THIS DOCUMENT ... 1

WHAT IS JIDE DOCKING FRAMEWORK ... 2

HOW TO USE JIDE DOCKING FRAMEWORK .. 2

UNDERSTANDING THE DOCKINGMANAGER .. 2

INTEGRATION WITH EXISTING APPLICATIONS .. 4

ADDING DOCKABLEFRAME .. 6

DEFINE INITIAL LAYOUT USING VISUAL DESIGNER .. 9

MANIPULATE DOCKABLEFRAMES ... 11

AVAILABLE OR UNAVAILABLE.. 12

DOCKABLEFRAME EVENTS .. 12

DOCKABLEFRAMEDROPLISTENER ... 13

WORKSPACE AREA .. 13

PERSISTING LAYOUT INFORMATION .. 14

PERSPECTIVES ... 16

UNDO AND REDO .. 17

OPTIONS ... 18

ADDITIONAL METHODS .. 24

MULTIPLE DOCKINGMANAGERS .. 25

ACTIVE FRAME ... 25

DRAGGING DOCKABLEFRAME ACROSS DOCKINGMANAGERS ... 25

LOOK AND FEEL .. 25

HOW TO USE OTHER LOOKANDFEEL ... 29

SUPPORT FOR MAC OS X ... 29

INTERNATIONALIZATION SUPPORT .. 30

Purpose of This Document

Welcome to the JIDE Docking Framework, the most advanced framework for developing
dockable windows in Swing.

This document is for developers who want to develop applications using the JIDE Docking
Framework.

COPYRIGHT © 2002-2014 J IDE SOFTWARE. ALL R IGHTS RESERVED

2

What is JIDE Docking Framework

Since AWT/Swing was introduced, many companies have embraced this new technology and
made many excellent user-interfaces with it. However, one thing that is obviously missing in
most Swing applications is the dockable window. If you have ever used the Visual Studio .NET
IDE, you already appreciate the value of dockable windows. Users have come to expect them
because they greatly increase the application’s ability to display information neatly. Without
the nice ability to group information into fixed areas, your application can look cluttered and
confusing.

 How to Use JIDE Docking Framework

This section is for developers who want to develop applications using JIDE Docking
Framework.

We developed JIDE Docking Framework with the intention of making migration very easy,
even if you have already created your application without it. We support all fours types of
RootPaneContainer (JFrame, JWindow, JDialog, or JApplet) as your application’s main window.

Understanding the DockingManager

DockingManager is an interface for managing DockableFrames. DefaultDockingManager,
which implements the DockingManager interface, maintains a list of all dockable frames in the
application. It also arranges dockable frames in response to the user’s mouse and keyboard
actions.

The DefaultDockingManager constructor takes two parameters:

public DefaultDockingManager(RootPaneContainer rootContainer, Container
contentContainer);

The rootContainer parameter is the main window of your application. It could be JFrame,
JWindow, JDialog, or JApplet. To make it easy to explain, we will use JFrame as an example when
describing most of the docking framework features. The contentContainer parameter is the
Container that you ask DockingManager to manage – part of the content pane of JFrame in this
case. DockingManager will manage only part of JFrame’s content pane and will use that part as a
placeholder for all your dockable frames. You still have control over the rest of your JFrame
content pane so that you can add toolbars and a status bar to it, for example. Please note, the

If you are writing your application from scratch, it’s probably easier to make your JFrame
extend DefaultDockableHolder. DefaultDockableHolder applies a BorderLayout to JFrame’s
content pane and uses the CENTER part as the contentContainer that is passed to
DefaultDockingManager’s constructor.

public class MyFrame extends DefaultDockableHolder {

COPYRIGHT © 2002-2014 J IDE SOFTWARE. ALL R IGHTS RESERVED

3

 ……

}

If you have a main Frame class which needs to extend JFrame directly, or you don’t want to
use a BorderLayout for your content pane then your JFrame can implement DockableHolder. In
this case, you need to create your own instance of DockingManager.

public class MyFrame extends JFrame implements DockableHolder {

 private static DockingManager _dockingManager;

 ……

 MyFrame() {

 ……

 _dockingManager = new DefaultDockingManager(…)
 ……

 }

 ……

}

During initialization, DockingManager creates a container called Workspace that is your
application document area (you can call DockingManager#getWorkspace() to access it). You can
fill the area that DockingManager allocates for your Workspace with either a JDesktopPane or
DocumentPane1 to manage your application documents. Here is how we do this in our sample
code:

_documentPane = createDocumentTabs();

_frame.getDockingManager().getWorkspace().setLayout(new BorderLayout

());

_frame.getDockingManager().getWorkspace().add(_documentPane,
BorderLayout.CENTER);

1 DocumentPane is the Tabbed Document Interface (TDI) implementation. Please refer to JIDE Components Developer
Guide for detail.

COPYRIGHT © 2002-2014 J IDE SOFTWARE. ALL R IGHTS RESERVED

4

Integration with Existing Applications

Since many of our customers have already built their application before they decide to use
our product, we considered integration to be very important when we designed the JIDE
Docking Framework.

The typical use case of JIDE Docking Framework is an application which has some tool
windows in addition to the document windows.

What is a tool window? A tool window is a modeless secondary window that has controls a
user can use to show the window or hide it. If your application only has one or two tool
windows, you may not want to use the Docking Framework, but the more tool windows you
have, the more benefit you can get by using the Docking Framework.

It is usually very straightforward to decide whether you need the JIDE Docking Framework.
Whenever you found yourself using JSplitPane within JSplitPane or using JDesktopPane and
JInternalFrame in order to arrange all the child windows you have, most likely you can replace
them with JIDE Docking Framework. For example, we browsed all the screenshots in Swing
Sightings and found that about one third of the applications there would be good candidates for
using the Docking Framework, not to mention almost all Java IDEs such as NetBeans, JBuilder,
and IntelliJ IDEA. Consider Figure 1, which is a screenshot we took from Swing Sightings. The
areas that are marked in red can be tool windows, while each ‘tab’ can be considered a tool
window. There are eight tool windows in it. The locations are fixed. User cannot customize it. To
make it worse, user cannot even view two tool windows side by side if they belong to the same
tabbed pane.

Figure 1 eXtend Workbench – SilverStream (this screenshot is copyrighted by SilverStream)

There are also cases in which some existing dialogs can be turned into tool windows. Most
dialogs can be thought of as modal secondary windows. A modal secondary window requires
the user to complete interaction with the secondary window and close it before doing anything
outside the window. This prevents the user from breaking up actions that the programmer
wants to happen together, like picking a filename and saving the file. In some cases this isn’t
needed, so you should consider converting these dialogs to modeless tool windows.

Once you identify all of the tool window candidates, you need to decide how to divide up
your screen. Docking Manager can only manage one area for you, so your menu bars, toolbars,

COPYRIGHT © 2002-2014 J IDE SOFTWARE. ALL R IGHTS RESERVED

5

and status bar should be excluded from that area. In addition, any window that you want visible
at all the times should also be excluded from this area. The remaining area should be a
ContentContainer that you pass as the second parameter of the DefaultDockingManager. In the
screenshot above, the blue area represents the ContentContainer.

Figure 2 eXtend Workbench – SilverStream (this screenshot is copyrighted by SilverStream)

Once the DockingManager is constructed, it’s time to add the tool windows. You will need
to find the existing code that creates these tool window candidates (such as areas 1 and 2 in the
above screenshot). Your Swing components should be contained within a Container or a JPanel,
which you can insert into your DockableFrame’s content pane. You may also listen for a
DockableFrameEvent so that you can customize what to do when a child frame is activated,
deactivated or hidden etc. During integration, we suggest you only add one or two tool
windows at first, and then continue to the next step (you can always add more tool windows
later).

When DockingManager is constructed, it creates a Workspace area for you (area 3 in Figure
2), which is a placeholder for your document windows. You can add any sort of document to the
Workspace area. If you prefer the traditional MDI style, for example, you can use JDesktopPane.
If you like the TDI style, you can use DocumentPane in JIDE Components product. Furthermore,
if your application already has an equivalent component to show your documents, then you can
use it directly in Workspace.

Figure 3 provides an example in the form of a screenshot of our sample demo. The
outermost frame is the main Frame (which could either be a JFrame, JDialog, or JWindow). The
area within the red rectangle is the ContentContainer. This has a side bar on each of the four
sides and a MainContainer in the center. The MainContainer is shown by the blue rectangle,
while the green area is the Workspace. The DockingManager manages the area that lies
between the perimeter of ContentContainer and the Workspace.

COPYRIGHT © 2002-2014 J IDE SOFTWARE. ALL R IGHTS RESERVED

6

Figure 3 Relations of several panels

Adding DockableFrame

Once the DockingManager is set up, the only thing you need to do is to add all your
DockableFrames, using code of the form shown below:

DockableFrame dockableFrame = new DockableFrame(“frameKey”,
JideIconsFactory.getImageIcon("Icon for the frame"));

frame.getContext().setInitMode(DockContext.STATE_FRAMEDOCKED);
frame.getContext().setInitSide(DockContext.DOCK_SIDE_SOUTH);

…..

// Initialize DockableFrame such as setting init state and init dock side

// Add components to ContentPane of DockableFrame

….

_frame.getDockingManager().addFrame(dockableFrame);

COPYRIGHT © 2002-2014 J IDE SOFTWARE. ALL R IGHTS RESERVED

7

The key of the dockable frame is passed in as a parameter to the constructor. Since we use
the key as a key for a hash map internally, it must uniquely identify a dockable frame in this
docking manager. If you attempt to add another frame with the same key, the framework will
print out an error message and do nothing. Note that since the key is not displayed anywhere
on screen, you don’t need to localize it. There are three more strings which will be displayed on
screen – the title on the title pane, the title on the tab when the frame is tabbed with other
dockable frames and the side pane title when the frame is auto-hidden on the side. The title is
displayed on the title pane of the dockable frame. The tab title appears in the tab area along
the bottom of the panel. The side pane title, as the name indicates, appears on the side pane
when the dockable frame is autohidden. You can call setTitle(String) to set the title,
setTabTitle(String) to set the tab title, setSideTitle(String) to set the side pane title. If you never
call those methods, all titles will be default to the dockable frame key which is not good because
titles should be localized and key is not localized. So you should always call at least
setTitle(string) to set to a localized string. The tabTitle and sidePaneTitle will default to the title
if setTitle(string) is called.

Figure 4 tab title v.s. side title v.s. title of DockableFrame

There are several methods you can use to set the initial default setting: setInitMode(),
setInitSide() and setInitIndex(). Dockable windows are placed related to the Workspace. For
example, if you want to put the dockable window to the south of workspace, you just need to
set the init side to DOCK_SIDE_SOUTH. Here are the possible combinations of those values:

initMode InitSide initIndex Comments

STATE_FRAMEDOCKED DOCK_SIDE_EAST

DOCK_SIDE_WEST

DOCK_SIDE_NORTH

DOCK_SIDE_SOUTH

Any integer

greater than 0

Frames with same mode,

same side, and same index

will form a single tabbed

pane.

STATE_AUTOHIDE

STATE_AUTOHIDE_SHOWING

DOCK_SIDE_EAST

DOCK_SIDE_WEST

DOCK_SIDE_NORTH

DOCK_SIDE_SOUTH

Any integer

greater than 0

Frames with same mode,

same side, and same index

will form a group on the

side bar.

AUTOHIDE_SHOWING is

treated the same as

COPYRIGHT © 2002-2014 J IDE SOFTWARE. ALL R IGHTS RESERVED

8

AUTOHIDE mode.

STATE_FLOATING N/A Any integer

greater than 0

Frames with same mode

and same index will form a

tabbed pane and lie in the

same floating window.

STATE_HIDDEN N/A N/A

The Docking Framework only provides the title bar of your dockable frame, leaving you to
manage the ContentPane. You can call dockableFrame.getContentPane() to get the
ContentPane and add whatever components to it. To make it easy for you, you can also call
dockableFrame.add method directly without calling dockableFrame.getContentPane().add().
Internally we will delegate and add the component to the content pane.

Once you have added all your components to the ContentPane, you can
DockingManager.addFrame(dockableFrame) method to add the dockable frames to Docking
Manager. At this point, you just tell the Docking Manager to manage this dockable frame for
you. Nothing is displayed yet. Once all dockable frames are added to the docking manager and
you are ready to display all the dockable frames, you call dockingManager.loadLayoutData() to
layout the frames. If there is no previous saved layout data, the Docking Framework calls to
resetToDefault() internally to layout the frames based on its initial default settings.

resetToDefault() will layout them according to the initial settings in the table above. By
default, it will split the content pane horizontally into three piece, then split the middle pane of
the first split pane vertically into three pieces. All dockable frames will then be added to those
split panes based on the initial settings, leading to a layout similar to that shown in Figure 3,
above. This behaviour can be changed by calling the method setInitSplitPriority(), passing in a
new split priority. The default value is defined as SPLIT_SOUTH_NORTH_EAST_WEST. What this
value means is it will split the south area first, then north area, then east then west. Then the
rest is left for workspace area. There are several other values you can use and will get result as
the screenshots below.

resetToDefault() will reset every single DockableFrame to its initial state. Below are the
methods which will impact the initial state. You could invoke those methods after
dockingManager.loadLayoutData() to configure those initial state.

initMode Methods impact the initial state

STATE_FRAMEDOCKED dockableFrame.setInitSide(int side)

dockableFrame.setInitIndex(int index)

dockableFrame.setDockedWidth(int dockedWidth)

dockableFrame.setDockedHeight(int dockedHeight)

STATE_AUTOHIDE

STATE_AUTOHIDE_SHOWING

dockableFrame.setInitSide(int side)

COPYRIGHT © 2002-2014 J IDE SOFTWARE. ALL R IGHTS RESERVED

9

dockableFrame.setInitIndex(int index)

dockableFrame.setAutohideWidth(int autohideWidth)

dockableFrame.setAutohideHeight(int autohideHeight)

STATE_FLOATING dockableFrame.setUndockedBounds(Rectangle undockedBounds)

STATE_HIDDEN N/A

Figure 5 With different initSplitPriority

You can compare the four layouts above and see the difference.

Define Initial Layout using Visual Designer

As you can see from the sample code to create a new DockableFrame, the initial layout is
actually defined using Java code. See these two lines below.

frame.getContext().setInitMode(DockContext.STATE_FRAMEDOCKED);
frame.getContext().setInitSide(DockContext.DOCK_SIDE_SOUTH);

There are quite a few other initial layout settings. Some of them are on each
DockableFrame; others are on DockingManager. If you only have very few DockableFrames, it’s
not big deal. But if you got more than 10 DockableFrames, it will be a tedious process to define
the initial layout and get it correct. Then if you need several initial layouts (i.e. one layout for
design mode, one layout for debug mode), it will be even harder. That’s why we introduced
Visual Designer to make initial layout much easier.

COPYRIGHT © 2002-2014 J IDE SOFTWARE. ALL R IGHTS RESERVED

10

Visual Designer is included in the release. After you run “ant Designer” in example folder to
run Visual Designer. Or you can always use the web start version from our website at
http://www.jidesoft.com/products/download.htm.

See below for a screenshot of Visual Designer under Windows XP. The power of Visual
Designer is it allows you to define adding/removing DockableFrame on fly and use drag-n-drop
to rearrange the layout.

Once you design the layout, then save it as .ilayout file. The .ilayout file is just a XML file. We
can use what postfix you want. However we recommend you to use .ilayout meaning initial
layout to tell the difference from .layout which is normal layout file.

If you will use initial layout, you don’t need to define initial layout of each DockableFrame
when you create it. See the code below. It’s the same code as the example above but you don’t
need to call those two lines anymore.

DockableFrame dockableFrame = new DockableFrame(“frameKey”,
JideIconsFactory.getImageIcon("Icon for the frame"));

frame.getContext().setInitMode(DockContext.STATE_FRAMEDOCKED);
frame.getContext().setInitSide(DockContext.DOCK_SIDE_SOUTH);

…..

// Initialize DockableFrame such as setting init state and init dock side

// Add components to ContentPane of DockableFrame

COPYRIGHT © 2002-2014 J IDE SOFTWARE. ALL R IGHTS RESERVED

11

….

_frame.getDockingManager().addFrame(dockableFrame);

After you add all the DockableFrame, you call:

_frame.getDockingManager().loadInitialLayout(layoutFileName or an
InputStream);

_frame.getDockingManager().loadLayoutData();

The first line will load the initial layout from ilayout file created by Visual Designer. The
second line will load the last saved layout file. User might change the layout after application
started. When application exits, it will save current layout. So loadLayoutData() will load that
layout back. If there is no saved layout file, it will use the exactly layout as initial layout.

Visual Designer is also a great place to learn all the customizable options provided by JIDE
Docking Framework. All the options are displayed in the property table when you select
DockingManager tree node or DockableFrame tree node.

Manipulate DockableFrames

Once the dockable frames have been added to DockingManager, the DockingManager will
manage them based on the user’s keyboard and mouse action. They can either be shown or
hidden and they may also be docked, floating, or auto-hidden. In addition, DockingManager also
provides support for those cases in which you want to control the frames directly. All these
operations are done through the DockingManager. For example, you may want to have a certain
window show up when editing a Java file or a MenuItem that collapses all dockable frames to
the closest side. Here are some commonly used methods on DockingManager:

activateFrame(): Activate a DockableFrame

activateWorkspace(): Deactivate all DockableFrames and activate the Workspace area

showFrame(): Show a window no matter what state it was in and activate it

hideFrame(): Hide a window no matter what state it was in

autohideAll(): Collapse all windows

toggleState(): Toggle between floating state and docked state.

toggleAutohideState(): Toggle between autohide state and docked state

toggleMaximizeState(): Toggle between maximized state and restored state

dockFrame(String frameKey, int side, int index): dock frame at the specified side and index.

floatFrame(String frameKey, Rectangle bounds, boolean isSingle): float frame at the
specified bounds.

COPYRIGHT © 2002-2014 J IDE SOFTWARE. ALL R IGHTS RESERVED

12

maximizeFrame(String name): maximize frame. You can right click on the title bar or tab of
any dockable frame and choose “Maximize”. A frame can be maximized only when it is in
STATE_FRAMEDOCKED.

restoreFrame(): restore the maximized frame if any.

notifyFrame() and denotifyFrame(): notifyFrame() gives a dockable frame visual effect
without calling showFrame(). A typical use case is some important information was displayed in
a dockable frame, you can use this method to grab user attention. The denotifyFrame() method
is opposite to notifyFrame().

Please refer to the DockingManager JavaDoc for more details.

Available or unavailable

Imagining you are developing a HTML/JSP editor, you got two set of dockable frames – one
set is for HTML editor and the other is for JSP editor. When a HTML editor is in focus, you want
to show the set of dockable frames for HTML editor. When JSP editor is in focus, you want to
show the set of dockable frames for JSP editor. Now imagine an HTML editor is in focus. You call
showFrame() to show all dockable frames for HTML editor and call hideFrame() to hide all the
frames for JSP editor. A user feels one of the dockable frame for HTML editor is not very helpful,
so he/she clicks on close button to close that dockable frame. However when he/she switched
to JSP editor and switched back to HTML editor, that frame is shown again because you call
showFrame() to show it. Isn’t it annoying?

To solve this problem, we introduce available and unavailable into JIDE Docking Framework.
It can be made available or unavailable by calling setFrameAvailable(String name) and
setFrameUnavailable(String name) respectively. When a dockable frame is initialized, it’s
always available.

When setFrameUnavailable(String name) is called, if the frame is visible, it will be hidden.
Any calls, such as showFrame(), hideFrame(), autohideFrame() etc, will be ignored because the
frame is unavailable. Later if you call setFrameAvailable(String name), the frame will be put to
the exact state and position when setFrameUnavailable(String name) was called. If the frame is
hidden when setFrameUnavailable(String name) is called, it will still be hidden.

Now, let’s revisit the HTML/JSP editor problem. All you need to do is to call
setFrameAvailable() to all dockable frames when HTML editor got focus and call
setFrameUnavailable() to those dockable frames when HTML editor lost focus.

DockableFrame Events

We support twelve events that are specific to dockable frame.

 DOCKABLE_FRAME_ADDED: when DockableFrame is added to DockingManager.

 DOCKABLE_FRAME_REMOVED: when DockableFrame is removed from DockingManager.

 DOCKABLE_FRAME_SHOWN: when showFrame is called on the DockableFrame.

 DOCKABLE_FRAME_HIDDEN: when hideFrame is called on the DockableFrame.

 DOCKABLE_FRAME_DOCKED: when DockableFrame changes from other states to DOCKED state.

COPYRIGHT © 2002-2014 J IDE SOFTWARE. ALL R IGHTS RESERVED

13

 DOCKABLE_FRAME_FLOATED: when DockableFrame changes from other states to FLOATED state.

 DOCKABLE_FRAME_AUTOHIDDEN: when DockableFrame changes from other states to

AUTOHIDED state.

 DOCKABLE_FRAME_AUTOHIDESHOWING: when DockableFrame changes from other states to

AUTOHIDE_SHOWING state.

 DOCKABLE_FRAME_ACTIVATED: when DockableFrame becomes active.

 DOCKABLE_FRAME_DEACTIVATED: when DockableFrame becomes inactive.

 DOCKABLE_FRAME_TABSHOWN: when DockableFrame becomes visible because its tab is

selected.

 DOCKABLE_FRAME_TABHIDDEN when DockableFrame becomes invisible because its tab is

deselected.

 DOCKABLE_FRAME_MAXIMIZED when DockableFrame is maximized.

 DOCKABLE_FRAME_RESTORED when DockableFrame is restored from maximized mode.

DockableFrameDropListener

You can call DockingManager#addDockableFrameDropListener to listen to any dock attempt
during drag-n-drop. DockableFrameDropListener has one method called

boolean isDockingAllowed(DockableFrame source, Component target, int side)

 When user starts to drag a dockable frame, the source will be that dockable frame. When it
is dragged over a component, the target will be the component. However we only use certain
components as target. These are DockableFrame, Workspace, DockableFrameContainer, and
ContainerContainerDivider. Let’s say user drags a dockable frame and moves it over the center
of Workspace area. Behind the scenes, the isDockingAllowed() method is called with the target
parameter set to the Workspace and the side parameter will be set to
DockContext.DOCK_SIDE_CENTER.

 Using this DockableFrameDropListener, you will be able to have a very fine control over the
dock. You can easily do thing like disallowing dock a dockable frame to another dockable frame.

Workspace Area

From figure 3, you can see a green area which is called workspace. As we mentioned at the
beginning of this guide, dockable frames are the secondary window. Workspace is the primary
window. Before v1.5 of JIDE Docking Framework, Workspace was not optional. However there
are some applications which don’t have document concept, nor could find something which is
special enough to be put in workspace area. All they need is dockable frames. So in v1.5, we
made Workspace area optional.

To hide Workspace, you can call setShowWorkspace(true) method on DockingManager. To
show it, call setShowWorkspace(false).

Here is an example of DockingFramework without Workspace area.

COPYRIGHT © 2002-2014 J IDE SOFTWARE. ALL R IGHTS RESERVED

14

Figure 6 Without Workspace area

In addition, Workspace can also be a place holder for dockable frame. You can change this
option by calling workspace.setAcceptDockableFrame(true/false). To put a dockable frame into
Workspace area, all you need to do is setInitSide() to DockContext.DOCK_SIDE_CENTER during
initialization. User can also drag-n-drop any dockable frame into Workspace, just like drag-n-
drop in other tabbed pane. By default Workspace can accept DockableFrame. However once
you call add() method directly on Workspace area, we assume you want to use Workspace area
for other purposes and we will automatically sets the acceptDockableFrame attribute to false.

Persisting Layout Information

JIDE Docking Framework offers the ability to save windows information and settings
between sessions, using the java.util.prefs package. This means that under Windows, the
information will be stored in the registry, while under UNIX, it will be stored in a file in your
home directory.

All layout data are organized under one key called the ‘profile key’. This can be any string,
but usually it’s your company name (we use “jidesoft” in our sample application). You should
call setProfileKey(String key) to set this key when your application starts up.

Under the profile key, there is a name for each layout configuration. The configuration
supports multiple sets of dockable frame positions as well as the main window’s size and
location. Thus, when John runs your application, he doesn’t have to use the same window
layout that Jerry used. The default set of preferences lies under the key “default”, and is used
whenever loadLayoutData() and saveLayoutData() are called to persist the window state.

If you prefer to specify the configuration, then loadLayoutDataFrom(String layoutName)
and saveLayoutDataAs(String layoutName) will persist the window state under the key
profileName. This is what you would use for the user preferences example above, or for distinct
projects or workspaces, etc.

getLayoutRawData() and setLayoutRawData(byte[] layoutData) are methods allowing you
get the layout data as a byte[], in case you want to load/save it without using java.util.prefs.

COPYRIGHT © 2002-2014 J IDE SOFTWARE. ALL R IGHTS RESERVED

15

If you prefer that JIDE Docking Framework use a file, rather than the registry, then simply
use loadLayoutDataFromFile(String filename) and saveLayoutDataToFile(String filename). The
filename param is, as you would expect, the destination of the configuration data.

Another option you have is to let the JIDE Docking Framework use its default file location.
By default it uses java.util.prefs to store layout information. However if you prefer disk storage,
but want JIDE to manage the location, you can call setUsePref(false) to disable using
java.util.prefs. Your layout data will be stored at {user.home}/.{profileName}, where
profileName is either “default” or your profile name as specified above. If you want to specify
where to store the layout data, you can call setLayoutDirectory(String dirName). Please note,
the directory will be used only when setUsePref is false. You also need to make sure you call set
those values (i.e. setProfileKey(), setUsePref(), setLayoutDirectory()) before you call any
loadLayout() or saveLayout() methods.

Once you decide to use preference or save as file, you can use several methods to check if a
layout is available or get a list of all layouts saved before. The isLayoutAvailable(String
layoutName) method will tell you if a layout is available. The getAvailableLayouts() method will
return you a list of layout names. The removeLayout(String layoutName) will remove the saved
layout.

JIDE supports two layout formats. One is traditional binary format while another is XML
format. You could use the setXmlFormat(boolean xmlFormat) method to configure the target
layout format.

If you choose use traditional binary format, each stored layout has a version number
assigned. If the returned version doesn’t match the expected value then the layout information
will be discarded. For example, if your application has changed a lot since it was last released to
users, you may not want the user’s old layout information to be used. You can just call
setVersion(short) to set the framework to a new version. This means that when a user runs your
application, the previously stored layout information will not be used.

You can switch between layouts at any time and each layout can have a different set of
dockable frames. In order to function correctly, you need to call beginLoadLayoutData() first
and then call addFrame() or removeFrame(). In the end, you should call one of the
loadLayoutData() methods to load the layout. Please note that if you add a frame between
calling beginLoadLayoutData() and loadLayoutData(), the frame will not be visible until
loadLayoutData() is called. However if you add a frame before calling beginLoadLayoutData() or
after loadLayoutData(), then the frame will be visible immediately.

Usually the user wants the main window’s bounds and state (as in
JFrame.setExtendedState() or JFrame.setState() for JDK1.3 and below) to be part of the layout
information so that the information can be persistent across sessions. This means that when you
switch layout, not only is the layout of dockable window reloaded but also the location and size
of the main window. If you wish, you can disable this default behaviour of saving the main
window’s bounds and state by calling setUseFrameBounds(boolean) and
setUseFrameState(boolean).

As you may know, loadLayoutData() or resetToDefault() will make the main JFrame visible.
Sometimes, you prefer to make the frame visible later so that you get a chance to initialize other
components in your application. In this case, you can call dockingManager.setShowInitial(false)

COPYRIGHT © 2002-2014 J IDE SOFTWARE. ALL R IGHTS RESERVED

16

before loadLayoutData() is called. After everything is initialized and you are ready to display the
main JFrame, call dockingManager.showInitial().

Perspectives
JIDE Docking Framework supports the perspective2 concept. Here is the step in order to fully

support perspective in your application.

1. You need to use Visual Designer to define initial layouts for each perspective. Make sure

you use the same dockable frame key for all dockable frames if they are shared by

different perspective. Then save each initial layout as .ilayout file. Those layouts will be

the default layout for each perspective. You should use the perspective name as the

name for .ilayout file to avoid confusion. For example, if you have a “debug”

perspective, name the .ilayout file as “debug.ilayout”.

2. You still add all dockable frames to DockingManager as before, no matter if a dockable

frame appears in any of the perspectives. You can skip call to setInitIndex, setInitMode

or setInitSide methods as .ilayout file will take care of those.

3. In your code, if you want to switch to a perspective, you call:

a) DockingManager#loadInitialLayout to load the .ilayout file.

b) Call DockingManager#loadLayoutDataFrom(perspectiveName) to load from a

named layout. You should use the perspective name as the name for the layout to

avoid confusion. For example, if you have a “debug” perspective, call

loadLayoutDataFrom(“debug”). Please note, this call will load the user setting of

the perspective as user might drag-n-drop to rearrange the layout already.

c) (Optional) You may want to disable user access to certain dockable frames in certain

perspective. If so, call DockingManager#setFrameUnavailable(frameKey) to disable

those dockable frames. Make sure you call it after the loadLayoutDataFrom()

method is called because this call will make all frames available.

4. If you want to switch from a perspective, you call

a) saveLayoutDataAs(perspectiveName) to save the layout in case user rearranged it.

This step will guarantee the step 3.b) above loading the layout successfully.

2 We refer to the Perspective concept in Eclipse.

COPYRIGHT © 2002-2014 J IDE SOFTWARE. ALL R IGHTS RESERVED

17

5. If you want to reset a perspective to the default layout as defined in the .ilayout file, you

call:

a) DockingManager#loadInitialLayout to load the .ilayout file.

b) Call DockingManager#resetToDefault() to reset the layout according the information

in .ilayout file.

Please note, saveLayoutDataAs() and loadLayoutDataFrom() methods will use

java.util.prefs package to save the layout. If you want to save the layout as file or as stream, you

can use loadLayoutDataFromFile(String filename) / saveLayoutDataToFile(String filename) or

loadLayoutFrom(InputStream in) / saveLayoutTo(OutputStream out) to do it. As long as you

use those methods in pair when saving and loading the layout, you will be fine.

Undo and Redo

Dockable window, especially drag-n-drop dockable window, is an advanced UI feature.
While technically oriented users can find all features after exploitation, it’s hard for non-
technical user. When users try to use an application using JIDE Docking Framework for the first
time, they might make mistakes. After a while, the layout will probably be messed up as they
don’t know exactly how to return to the old state. This is where the call to the resetToDefault()
method will bring the layout back to the initial state. However there is no way to bring it back to
a state in the middle. As a result, we introduced the undo/redo functionality to the JIDE Docking
Framework to address this issue.

By default, the undo/redo function is turned off. To turn it on, call setUndoLimit(int) and
pass in a non-zero value. The larger the number, the more memory will be used. As in the case
of 20 dockable frames, each undo/redo will take around 10K memory – just to give you an idea.
We suggest setting undo limit to 10.

The undo/redo history is not persisted. So after you close the application, the undo/redo
history is gone. If you ever want to clear the history during the same session, you can call
discardAllUndoEdits().

undo() will undo the last operation. Those operations include dragging a dockable frame,
double clicking on the title bar of dockable frame or tab, hiding a dockable frame, autohiding a
dockable frame, floating a dockable frame etc.

redo() will redo the last undone operation.

The undo/redo feature is built on top of Swing’s UndoManager. If you need to get advanced
feature provided by UndoManger, you can access the UndoManager directly by calling
getUndoManager().

There are cases you need to know when an operation is happened so that you can update
the menu items to indicate the correct undo/redo state. You can use UndoableEditListener to
make it possible (see below).

COPYRIGHT © 2002-2014 J IDE SOFTWARE. ALL R IGHTS RESERVED

18

 _frame.getDockingManager().addUndoableEditListener(new
UndoableEditListener(){

 public void undoableEditHappened(UndoableEditEvent e) {

 refreshUndoRedoMenuItems();

 }

 });

In the refreshUndoRedoMenuItems, all you need to do is to set the correct state and name
to undo/redo menu items. See below.

_undoMenuItem.setEnabled(_frame.getDockingManager().getUndoManager().canUnd
o());

_undoMenuItem.setText(_frame.getDockingManager().getUndoManager().getUndoPr
esentationName());

_redoMenuItem.setEnabled(_frame.getDockingManager().getUndoManager().canRed
o());

_redoMenuItem.setText(_frame.getDockingManager().getUndoManager().getRedoPre
sentationName());

Options

DockingManager has a few options that you can tweak to change its behaviors.

Floatable: This indicates whether the dockable frame(s) can be undocked. If you call
dockingManager.setFloatable(true/false), all dockable frames will become floatable (or not
floatable). DockableFrame also has a method setFloatable(boolean). It will make that dockable
frame floatable (or not floatable).

Autohidable: This indicates whether the dockable frame can be automatically hidden
against the side of its JFrame. If you call dockingManager.setAutohidable(true/false), all
dockable frames will become floatable (or not floatable). DockableFrame also has a method
called setAutohidable(boolean). It will make that dockable frame autohidable (or not
autohidable).

Hidable: This indicates whether the dockable frames can be closed (or hidden). If you call
dockingManager.setHidable(true/false), all dockable frames will closable (or not closable).
DockableFrame also has a method called setHidable(boolean). It will make that dockable frame
closable (or not closable).

COPYRIGHT © 2002-2014 J IDE SOFTWARE. ALL R IGHTS RESERVED

19

Dockable: This indicates whether the dockable frames can be docked or not. Unlike the
previous three options, this is not a global option but an option on each DockableFrame. This
means that you have to call setDockable() on each DockableFrame to change its behavior. Since
one of the main features provided by JIDE Docking Framework is the dockable window, it
doesn’t make sense for you to make all dockable windows not dockable! However if you want to
set this attribute for all dockable frames, you need to obtain a list of the dockable frames from
the DockingManager and then call setDockable() on each DockableFrame (we don’t have a
convenient method on DockingManager that does it for you).

Rearrangable: This indicates whether the dockable frames can be arranged by users. There
are some cases where developers want to layout the dockable frames manually, save this
layout, and ship the product to their end users. Once it reaches the end users, they don’t want
users to change the position of the dockable frames. In this case, just call setRearrangable(false)
when releasing the product. User still can autohide frames or resize frames etc. However, they
can’t change the state of the frames or move them around.

Resizable: This indicates whether the dockable frames can be resized by users. If this option
is false, none of the dockable frames can be resized, including docked mode, floating mode or
autohide mode. Usually you can combine this option with Rearrangable option so that you can
rearrange/resize dockable frames freely during development and ship an optimized but fixed
layout to users.

ContinuousLayout: This indicates whether the components continuously redraw
themselves as the user resizes the split pane (the default is false). Call
setContinuousLayout(true/false) to change this behavior.

SensitiveAreaSize: When a dockable frame is dragged near the border of a target frame,
the outline changes to indicate what the dragged frame will look like if it is ‘snapped’ into the
target frame. The outline is drawn around the frame’s contents rather than the frame itself
because the frame itself merges into the container walls. This integer value is used to specify
how wide the docked frame’s border is (by default, its 20 pixels). You can call
setSensitiveAreaSize(int) to set to a new value.

Available Buttons: DockableFrame can have buttons on the title bar. Although by default, it
will have three buttons – Float/Dock, Autohide and Close, you can choose what buttons are
visible by calling dockableFrame.setAvailableButtons(int buttons). The “buttons” parameter is
a bitwise OR of the following values defined in DockableFrame: BUTTON_CLOSE,
BUTTON_AUTOHIDE, BUTTON_HIDE_AUTOHIDE, BUTTON_FLOATING and BUTTON_MAXIMIZE.
For example, if you want to be compatible with the earlier version of JIDE Docking Framework
which didn’t show the ‘Floating’ button, you can do the following:

dockableFrame.setAvailableButtons(DockableFrame.BUTTON_CLOSE |
DockableFrame.BUTTON_AUTOHIDE);

 OutlineMode: When a dockable frame is dragged, an outline of the frame is painted. In
early versions of JIDE Docking Framework, only partial outlines were painted if the outlines

COPYRIGHT © 2002-2014 J IDE SOFTWARE. ALL R IGHTS RESERVED

20

extended beyond the main JFrame. In version 1.2.1 of JIDE Docking Framework, we added this
option to paint the full outline instead. If OutlineMode is FULL_OUTLINE_MODE, the full outline
will be painted even if it extends beyond the main JFrame; if it is PARTIAL_OUTLINE_MODE, the
outline will be clipped. In order to avoid changing the behavior of current installations, we set
the default OutlineMode to PARTIAL_OUTLINE_MODE. Please note, if you use
FULL_OUTLINE_MODE, there will be flickering when you drag the outline under JDK5. On JDK6,
because of the true double buffer bug fix, there is no noticeable flickering.

If you are using JDK6u10 and above, there are two more modes you can use. They are
HW_TRANSPARENT_OUTLINE_MODE and HW_OUTLINE_MODE. Both leverage the translucent
window feature introduced in JDK6u10.

GroupAllowedOnSidePane: This determines if the group is allowed on the SidePane. By
default this option is true, which means that when you autohide a tabbed pane with several
dockable frames on it, all those dockable frames will become one group on the SidePane.
However if this option is set false, the each dockable frame will become one group. Note that
we don’t support changing this option on the fly, so if you want change it; you must do so during
the initialization stage.

EasyTabDock: This is an option to make the tab-docking of a dockable frame easier. The
previous approach requires the user to drag a dockable frame and point to the title bar of
another dockable frame in order to tab-dock with it. However if this option set on, then pointing
to the middle portion of any dockable frame will tab-dock with that frame (the default is off).
Note that if you turn this option on, you should make sure that you warn your users to press the
CTRL key during dragging, to prevent it from being docked. If you do not do this then your users
will probably feel frustrated when they try to float a dockable frame but find that it always
docks!

TabDockAllowed: This is an option to allow/disallow tab dock. If false, the whole tab dock
will be disabled, which means you will never see a tabbed pane used in the whole Docking
Framework.

SideDockAllowed: This is an option to allow/disallow side dock. Side dock is the only way to
create a new tabbed pane. If false, the whole side dock will be disabled, which means user will
never be able to create a new tabbed pane area except those already existed as part of initial
layout.

Allow Nested Floating Window: This is an option to allow nested windows when in floating
mode. JIDE Docking Framework can allow you to have as many nested windows in one floating
container as you want. However, not all your users want to have that complexity. Therefore we
leave this as an option which you can choose to turn on or leave off (the default). In our opinion,
it’s not very useful to have nested floating windows. However, you can turn this on if your users
are very advanced and your application needs to have nested floating windows.

Show Gripper: This is an option to give users a visual hint that the dockable frame can be
dragged. To make this obvious to the user, we added an option so that a ‘gripper’ is painted on
the title bar of those dockable frames which can be dragged. However, since the grippers can
make the screen looks busy, if you have a lot of dockable frames, we suggest you turn this
option off (the default). If you only have a few dockable frames, we suggest you turn it on.

COPYRIGHT © 2002-2014 J IDE SOFTWARE. ALL R IGHTS RESERVED

21

Show/Hide TitleBar: This is an option to hide the title bar of dockable frame. Title bars have
two functions in Docking Framework. First, it provides a consistent way to name each dockable
frame. User can look at the title bar to find out what the dockable frame is for. If the content
pane of each dockable frame said clearly what it is for, you don’t really care this function.
Secondly, it provides a place for mouse to drag. Please note, the tab of each dockable frame has
a similar function. The difference is dragging the title bar will drag all dockable frames in the
same tabbed pane vs. dragging the tab only drags one dockable frame. Also when there is only
one tab in tabbed pane, the tab will be hidden. User can only drag the title bar. You can choose
to hide title bar. However if you still want to keep the drag-n-drop feature, you should call
setHideOneTab(false) using TabbedPaneCustomizer.

DoubleClickAction: This is an option to define what will happen after user double clicks on
title bar of dockable frame. By default, the value is DOUBLE_CLICK_TO_FLOAT which means
double click will toggle between floating state and docked state. You can set it to
DOUBLE_CLICK_TO_MAXIMIZE so that double click will maximize dockable frame.

TabbedPane options: By default dockable frames are put into a tabbed pane in which
tabPlacement is set to ‘top’. If you want a different behavior, you can call
setTabbedPaneCustomizer(customizer), as shown below:

DefaultDockingManager _dockingManager = // init here

dockingManager.setTabbedPaneCustomer(new
DefaultDockingManager.TabbedPaneCustomizer() {

 public void customize(JideTabbedPane tabbedPane) {

 tabbedPane.setTabPlacement(SwingConstants.TOP); // put tab on top

 tabbedPane.setTabResizeMode(JideTabbedPane.RESIZE_MODE_NONE);
// don’t shrink tab

 tabbedPane.setTabShape(JideTabbedPane.SHAPE_BOX); // use box
shape

 ……

 }

});

Popup Menu: When user right clicks on the title bar or tab of dockable frame, a context
menu pops up. We provided a default menu, which allows you to float, hide, or auto-hide the
frame. You can call setPopupMenuCustomizer() to modify this menu and create your own
popup menu choices. The popupMenu, the dockingManager, and the dockableFrame
parameters are all pretty much self-explanatory, with the caveat that the dockableFrame
parameter refers to the Frame that is currently visible. The onTab parameter allows you to have
separate menus for the tabs themselves and the title bar. A special case is you don’t want to
have any popup menu for a dockable frame. In this case, just call popupMenu.removeAll(). Since
there are no items in the popup menu, the menu will not be shown.

COPYRIGHT © 2002-2014 J IDE SOFTWARE. ALL R IGHTS RESERVED

22

 public interface PopupMenuCustomizer {

 void customize(JPopupMenu popupMenu,

 DefaultDockingManager dockingManager,

 DockableFrame dockableFrame,

 boolean onTab);

 }

Title Bar Component: You can add any component to the title bar. A typical use case is to
add a toolbar. Note that we handle the position of the title bar component differently,
depending on the Look and Feels. When the dockable frame is wide enough, we will insert the
title bar component between the title text and the three default buttons. If this is not the case
then the title bar component will be put just below the title bar (as is the default in the
EclipseLookAndFeel). In VsnetLookAndFeel, since the title bar of the dockable frame is very thin,
we always put the title bar component below the title bar (it doesn’t look good if the title bar
component is at the same line as title bar). However you can modify this behaviour by changing
the UIDefaults of "DockableFrameTitlePane.titleBarComponent". This is a boolean, where true
means they can be on the same line if width permits, and false means they must always be on
different lines.

See below for example source code to add a JToolBar to the dockable frame as title bar
components.

JToolBar toolBar = new JToolBar();

toolBar.add(createTitleBarButton(…));

//…. Add whatever you want to the toolbar

toolBar.setFloatable(false);

toolBar.setRollover(true);

dockableFrame.setTitleBarComponent(toolBar);

Customize TabbedPane: DockingManager heavily uses JideTabbedPane when dockable
frames are docked together as tabs. To customize the tabbed pane, you can call
DockingManager’s setTabbedPaneCustomizer() method. For example, to move tabbed pane’s
tabs from bottom to top, you can call

dockingManager.setTabbedPaneCustomizer(new
DockingManager.TabbedPaneCustomizer() {

 public void customize(JideTabbedPane tabbedPane) {

 tabbedPane.setTabPlacement(JideTabbedPane.TOP);

COPYRIGHT © 2002-2014 J IDE SOFTWARE. ALL R IGHTS RESERVED

23

 }

});

In fact, you can also combine with other options to hide the title bars and use tabs to do all
the drag-n-drop operations.

dockingManager.setTabbedPaneCustomizer(new
DockingManager.TabbedPaneCustomizer() {

 public void customize(JideTabbedPane tabbedPane) {

 tabbedPane.setTabPlacement(JideTabbedPane.TOP);

 tabbedPane.setHideOneTab(false);

 }

});

dockingManager.setShowTitleBar(true);

dockingManager.setEasyTabDock(true);

Here is the result. As you can see, all tabs are on top now. Dockable frame doesn’t have title
pane which saves more vertical spaces for you. However users can still drag-n-drop to rearrange
the dockable frames by dragging the tab. Or right click to show the popup menu to do
hide/autohide/float/maximize the dockable frames although the title pane buttons are not
there anymore.

Heavy weight component support: JIDE Docking Framework is a light weight Swing
component. In real application, you might need to use heavyweight component in order to

COPYRIGHT © 2002-2014 J IDE SOFTWARE. ALL R IGHTS RESERVED

24

support native widget such as JDIC web browser or even ActiveX or 3D canvas such as JOGL.
There will be some conflicts as heavyweight component tends to obscure lightweight
component in certain condition. JIDE Docking Framework solves those issues. All you need to do
is to use DockingManager#setHeavyweightComponentEnabled(true).

Additional Methods

DockingManager has several additional methods that may be useful:

getAllFrames(): Gets a collection of all the keys of dockable frames.

getFrame(String name): If you know the key of the dockable frame (in most cases you do),
you can call this method to get the actual dockable frame.

getActiveFrameKey(): If there is one active frame in the DockingManager, this method will
give you that frame (it returns null if no frame is active).

updateComponentTreeUI(): this method is for switching the Look and Feel, without
restarting. This method will call SwingUtilities.updateComponentTreeUI () on all top level
containers it knows about.

removeAllFrames(): this method will remove all frames from DockingManager. You can call
this method before closing the main JFrame to get DOCKABLE_FRAME_REMOVED events sent to
all your registered listeners, so that you can do clean-up, for example. However, make sure you
only call it after you have saved the layout data.

setEscapeKeyTargetComponent(Component): If this is never called, workspace will be the
escape key target component. When ESC key is pressed in a dockable frame, the dockable frame
will lost focus and this component will get focus.

COPYRIGHT © 2002-2014 J IDE SOFTWARE. ALL R IGHTS RESERVED

25

Multiple DockingManagers

Most applications only need one DockingManager with multiple DockableFrames. However
JIDE Docking Framework supports multiple DockingManagers in the same application. They
could be in the same JFrame or in different JFrames. They could be two independent
DockingManager or one DockingManager is inside a DockableFrame from another
DockingManager.

Active Frame

A DockingManager can have at most one active DockableFrame. If you don’t do additional
coding and have several DockingManagers in one application, each DockingManager can have
its own active frame. This is OK in some cases, for example, when two DockingManagers
manage two panels that are independent in the application. However in other cases, user might
want only one frame can be active in several DockingManagers. For example, there are menu
items that should apply to the active frame. If there are two active frames, user will be confused
about which frame the menu items will act on. In order to support this, we introduced
DockingManagerGroup class. DockingManagerGroup works just like ButtonGroup. You just add
DockingManager to DockingManagerGroup. DockingManagerGroup will make sure one frame is
active at a time. You can run SideBySideDockingFrameworkDemo under examples\D2.
TwoDockingFramework to find out how to use it.

Dragging DockableFrame Across DockingManagers

JIDE Docking Framework supports dragging dockable frame from one DockingManager to
another DockingManager. By default, this feature is disabled. However if you designed your
application to have several DockingManagers and you want to enable this feature, you can call

 dockingManager.setCrossDraggingAllowed(true);

 dockingManager.setCrossDroppingAllowed(true);

The first line enables dragging a dockable frame out of the DockingManager. The second
line enables dropping a dockable frame into the DockingMangaer. You can run two demos3
under examples\D2.TwoDockingFramework to find out how it behaves.

Look And Feel

To support the dockable windows feature in Docking Framework, we created three new
components that are not provided as standard Swing Components: DockableFrame, SidePane
and JideTabbedPane. Since all three have their own ComponentUI, if you want to use your own

3 The two demos are TwoFramesDockingFrameworkDemo.java and SideBySideDockingFrameworkDemo.java.

COPYRIGHT © 2002-2014 J IDE SOFTWARE. ALL R IGHTS RESERVED

26

LookAndFeel, you just need to create an appropriate ComponentUI and add the mapping to
UIClassmap of UIDefaults. Alternatively, if only some minor modifications are needed, you can
simply modify some values of the Component Defaults, as shown below:

DockableFrame UIDefaults

Name Type Description

DockableFrame.background Color Background

DockableFrame.border Border Border

DockableFrame.slidingEastBorder Border The border when frame is sliding from east side

DockableFrame.slidingWestBorder Border The border when frame is sliding from west side

DockableFrame.slidingSouthBorder Border The border when frame is sliding from south side

DockableFrame.slidingNorthBorder Border The border when frame is sliding from north side

DockableFrame.activeTitleBackground Color Active title bar background color

DockableFrame.activeTitleForeground Color Active title bar foreground color

DockableFrame.inactiveTitleBackground Color Inactive title bar background color

DockableFrame.inactiveTitleForeground Color Inactive title bar foreground color

DockableFrame.titleBorder Border The Border of title

DockableFrame.activeTitleBorderColor Color Active title bar border color

DockableFrame.inactiveTitleBorderColor Color Inactive title bar border color

DockableFrameTitlePane.font Font Font used by title bar

DockableFrameTitlePane.titleBarComponent Boolean If the title bar component will be put the same line as

title bar if the is enough space. It’s true only under

Eclipse L&F.

DockableFrameTitlePane.alwaysShowAllButtons Boolean If all title bars are visible no matter what. Usually

when a button is not used or not applicable, it’s

hidden.

DockableFrameTitlePane.buttonsAlignment Integer The alignment of buttons. It could be either TRAILING

or LEADNING.

DockableFrameTitlePane.titleAlignment Integer The alignment of title bar text. It could be either

TRAILING, LEADNING or CENTER.

DockableFrameTitlePane.buttonGap Integer The gap in pixels between buttons

DockableFrameTitlePane.showIcon Boolean If the dockable frame icon is shown on the title bar.

Under Vsnet L&F, it’s false. Under Eclipse L&F, it’s

true.

DockableFrameTitlePane.margin Insets The margin of title bar.

DockableFrameTitlePane.hideIcon Icon The icon used on the button to hide the dockable

frame

DockableFrameTitlePane.unfloatIcon Icon The icon used on the button to dock the dockable

COPYRIGHT © 2002-2014 J IDE SOFTWARE. ALL R IGHTS RESERVED

27

frame from floating mode

DockableFrameTitlePane.floatIcon Icon The icon used on the button to float the dockable

frame

DockableFrameTitlePane.autohideIcon Icon The icon used on the button to auto-hide the dockable

frame

DockableFrameTitlePane.stopAutohideIcon Icon The icon used on the button to pin the dockable frame

from auto-hidden mode to docked mode

DockableFrameTitlePane.hideAutohideIcon Icon The icon used on the button to hide the showing auto-

hide the dockable frame

DockableFrameTitlePane.maximizeIcon Icon The icon used on the button to maximize the dockable

frame

DockableFrameTitlePane.restoreIcon Icon The icon used on the button to restore the dockable

frame from maximized mode.

SidePane UIDefaults

Name Type Description

SidePane.margin Insets Margin of SidePane. Only top and left is used.

SidePane.iconTextGap Integer Gap between icon and text

SidePane.textBorderGap Integer The distance between end of the longest title and the border of

the button

SidePane.itemGap Integer Gap between two buttons

SidePane.groupGap Integer Gap between two button groups

SidePane.foreground Color Foreground

SidePane.background Color Background

SidePane.lineColor Color Line color of each button

SidePane.buttonBackground Color Button Background

SidePane.font Font Font used by SidePane

SidePane.showSelectedTabText Boolean If the value is true, it means the text of selected item will be

visible. By default, it is true under VSNET style or false under

Eclipse style.

SidePane.alwaysShowTabText Boolean If the value is true, it means the text of all items will be visible.

By default, it is false under all styles.

SidePane.orientation Integer 0 means the labels, when displaying vertically, are rotated 90

degree clock-wise. This is the way that Vsnet chose. 1 means

for east side, its rotated 90 degree clockwise and for west side,

its 90 degree counter-clockwise. This is the way IntelliJ IDEA

chose.

COPYRIGHT © 2002-2014 J IDE SOFTWARE. ALL R IGHTS RESERVED

28

JideTabbedPane UIDefaults

Name Type Description

JideTabbedPane.background Color Background

JideTabbedPane.foreground Color Foreground

JideTabbedPane.light Color Color to draw light area of tabs

JideTabbedPane.highlight Color Color to draw highlight area of tabs

JideTabbedPane.shadow Color Color to draw shadow area of tabs

JideTabbedPane.darkShadow Color Color to draw dark shadow area of tabs

JideTabbedPane.tabInsets Insets Insets of tab

JideTabbedPane.contentBorderInsets Insets Insets of tab content pane

JideTabbedPane.tabAreaInsets Insets Insets of the tab area

JideTabbedPane.tabAreaBackground Color Tb area background

JideTabbedPane.font Font Font

JideTabbedPane.unselectedTabTextForeground Color Text color of unselected tab

JideTabbedPane.selectedTabBackground Color Selected tab background

JideTabbedPane.textIconGap Integer Gap between icon and text, in pixels

JideTabbedPane.showIconOnTab Boolean A Boolean flag. If it’s true, the tabs will show the icon.

By default, it is true under VSNET, OFFICE2003 and

OFFICE2007 style and false under Eclipse style.

JideTabbedPane.showCloseButtonOnTab Boolean A Boolean flag. If it’s true, the close icon will be visible

on each tab. If it’s false, the close icon will be visible

along with the left and right scroll button on the right

side. By default, it is false under VSNET, OFFICE2003

and OFFICE2007 style and true under Eclipse style.

JideTabbedPane.closeButtonAlignment Integer The valid values are SwingConstants.TRAILING or

SwingConstants.LEADING

Miscellaneous UIDefaults

Name Type Description

Contour.color Color The contour outline color

Contour.thickness Integer The contour thichness.

ContentContainer.background Color Background color of the container. Please refer to figure

3 to see what content container area is .

Workspace.background Color Background color for workspace. Again, you can refer to

figure 3 to see what workspace area is.

DockingFramework.changeCursor Boolean A flag for cursor shape change while dragging. By

default it’s true under Eclipse style and false under all

COPYRIGHT © 2002-2014 J IDE SOFTWARE. ALL R IGHTS RESERVED

29

others.

How to use other LookAndFeel

JIDE Docking Framework can work with any existing LookAndFeels, either those that come
with JDK, or third-party LookAndFeels. However, as you can see the UIDefault tables from
previous section, you must somehow insert additional UIDefault values into LookAndFeel
UIDefault table for JIDE Docking Framework to work correctly.

The easiest way to do so is to call LookAndFeelFactory.installJideExtension(). This call will
add necessary UIDefaults not only for JIDE Docking Framework but also for all other JIDE
products (see below):

UIManager.setLookAndFeel(“<whatever L&F>”);

LookAndFeelFactory.installJideExtension();

If your application only use one L&F, you just need to call installJideExtension() once when
application starts. However if you allow users to change L&F on fly, you need to make sure every
time you call UIManager.setLookAndFeel() to change L&F, you also call installJideExtension()
immediately. The installJideExtension() method also has an overload method which takes an int
parameter. You can pass in a style to this method such as LookAndFeelFactory.VSNET_STYLE,
OFFICE2003_STYLE, OFFICE2007_STYLE, XERTO_STYLE, ECLIPSE_STYLE or ECLIPSE3X_STYLE.
Those styles will determine what styles you want to use on top of the existing L&Fs.

To make it convenient to you, no matter you purchased source code license or not, you will
have source code LookAndFeelFactory.java from the Developer Forum’s custom-only area. You
can download and put in your source code repository so that you can customize to fit your need.

Support for Mac OS X

In the 1.2.6 release we added support for AquaLookAndFeel from Apple Inc on Mac OS X.
Below is a screenshot of JIDE demo on Mac OS X using the AquaLookAndFeel. Since
AquaLookAndFeel is only available under Mac OS X, you can only get this L&F on Mac OSX. All
you need to do is set to AquaLookAndFeel using UIManager then using LookAndFeelFactory.
installJideExtension() method (see below).

COPYRIGHT © 2002-2014 J IDE SOFTWARE. ALL R IGHTS RESERVED

30

Internationalization Support

All Strings used in JIDE Docking Framework are contained in one properties file called
basic.properties under com/jidesoft/plaf/basic. Some users contributed localized version of this
file and we put those files inside jide-properties.jar. If you want to support languages other than
those we provided, just extract this properties file, translated to the language you want, add the
correct postfix and then jar it back into jide-properties jar. You are welcome to send the
translated properties file back to us if you want to share it.

