
JIDE Data Grids Developer Guide
Contents

PURPOSE OF THIS DOCUMENT .. 1

OVERVIEW ... 1

DATABASE SUPPORT .. 2

RESULTSETTABLEMODEL .. 2
DATABASETABLEMODEL ... 3

Sorting .. 4
Filtering .. 4
Caching and Performance .. 5

PAGING SUPPORT .. 6

PAGENAVIGATIONSUPPORT .. 6
ABSTRACTPAGETABLEMODEL AND DEFAULTPAGETABLEMODEL .. 6
PAGENAVIGATIONBAR ... 7

HIBERNATE SUPPORT ... 8

WHAT’S NEXT .. 9

Purpose of This Document
JIDE Data Grids is built on top of the JIDE Grids to provide additional support for the

database related features. This developer guide is designed for developers who want to learn
how to use JIDE Data Grids in their applications.

JIDE Data Grids heavily depends on features and components provided by JIDE Grids. If you
never used JIDE Grids before, we strongly recommend you read JIDE Grids Developer Guide first
or at least refer to it while reading this developer guide.

Overview
JIDE Grids brought many advanced features to JTable. Among them, the two mostly used

features are filtering and sorting. Both the filtering and sorting feature are implemented inside
the table models, which are FilterableTableModel and SortableTableModel respectively.
However, all database systems can handle filtering (using WHERE statement) and sorting (using
ORDER BY statement). When the database table is huge, it is preferred to let the database
handles the filtering and sorting so that the data doesn’t need to be downloaded to the client
side. Thus, to let the database handling filtering and sorting is one of the most important

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

2

features in JIDE Data Grids. Since Hibernate is one of the most widely used Java relational
persistence layer, we also want to support Hibernate in JIDE Data Grids.

Tables in database could be huge. If a table has millions of rows and we load all the rows
into memory, it will consume a huge amount of memory and will of course be very slow. As a
matter of facts, user will probably only look at 10 or maybe 20 rows depending on the viewport
size, there is no need to download all the rows locally. That’s the reason we introduced the
paging feature in JIDE Data Grids. In fact, the paging mechanism is not limited to the database or
to the JTable. It is generic enough to support any non-database JTable or even JList.

Database Support
There are two table models related to the database. The first one is the

ResultSetTableModel that deals with a JDBC ResultSet. The second one is the
DatabaseTableModel. It uses ResultSetTableModel internally but it supports the database
filtering and sorting.

ResultSetTableModel
ResultSetTableModel uses an existing ResultSet and converts it into a TableModel so that

JTable or tables in JIDE Grids can use it. If you have a ResultSet available, you can use this table
model to display it. ResultSetTableModel will not load all the records at once but loading it when
TableModel#getValueAt is called. In the other word, we will only load the first several rows that
are currently visible in the current viewport. While users page up/down or scroll up/down in the
table, ResultSetTableModel will then load those rows just before they are displayed. We will also
cache all the rows that are ever loaded so that we don’t need to ask the database for the same
rows again. Of course, if the database table is changed, you can tell the ResultSetTableModel to
invalidate the cache so that next time it will ask the database for the rows again.

To create a ResultSetTableModel, you call

ResultSetTableModel tableModel = new ResultSetTableModel(resultSet);

Or

ResultSetTableModel tableModel = new ResultSetTableModel(resultSet, recordCount);

The reason we need a second parameter for the recordCount is because it is very slow to
find out how many records in a ResultSet. The only way we knew is to use

 resultSet.last();
 int recordCount = resultSet.getRow();

 It works but very slow if the table is large. So if you happen to know the record count for
the ResultSet, you can pass it in to the constructor so that we don’t need to use the code above
to figure it out.

COPYRIGHT © 2002-2008 J IDE SOFTWARE. ALL RIGHTS RESERVED

3

Since the ResultSet contains the metadata for the columns, most table model methods such
as getColumnCount, getColumnName and getColumnClass are implemented based on the
metadata in the ResultSet.

The getValueAt is implemented as well. We added an extra layer of cache to cache the
ResultSet. So the first thing we did in getValueAt is to look at the cache and check if we have the
record. If not cached, we will jump to the record using ResultSet’s absolute(recordIndex)
method, load the record to the cache and return the value for the specific column. Note that not
all ResultSets support scrollable cursor, which means it will throw exception when the absolute
method is called. In this case, we will have to keep calling next() method from the cursor
position until it reaches the specified row index. It won’t be an issue if user page down page by
page. If user uses the vertical scroll bar to scroll down, it will take time to fetch all the records till
reach the page. So please keep this in mind and use a scrollable ResultSet if possible.

The ResultSetTableModel doesn’t know how to handle filtering and sorting. It still needs
FilterableTableModel and SortableTableModel to do it which means it will not leverage the
database filtering and sorting. Here comes the DatabaseTableModel.

DatabaseTableModel
We started to implement this class with a test case of a SortableTable using

ResultSetTableModel with 200k rows using Derby JDBC. To sort these 200k rows, it took about
12 seconds. To filter this table using a filter similar to the SQL IN statement, it took about 12
seconds as well. What happen is that most of 12 seconds is spent on loading the records from
the database. Our goal here is to how much we improve in these two areas with the
DatabaseTableModel. Of course, the code to use this DatabaseTableModel needs to be as
simple as possible.

Let’s start with the constructors of the DatabaseTableModel.

public DatabaseTableModel(Connection connection, String fromStatement) throws SQLException
public DatabaseTableModel(Connection connection, String selectStatement, String fromStatement) throws
SQLException

If you ever used JDBC before, you should be familiar with the Connection. You can easily get
a Connection instance using DriverManager.getConnection method as long as you have the
database url and user name/password if any. See below for an example to get a Connection to
Derby database. Without getting into too much detail, you can refer to the document for the
database you are using to figure out how to do it.

Class.forName("org.apache.derby.jdbc.EmbeddedDriver");
Connection connection = DriverManager.getConnection("jdbc:derby:MyDatabase;create=true"); // MyDatabase is
the database name

The next thing is to create a DatabaseTableModel. Let’s say we have a “sales” table in the
database. All you need to do is

DatabaseTableModel tableModel = new DatabaseTableModel(connection, "*", " sales");

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

4

The second parameter here is the select statement. The “*” means select all the columns
from the table “sales”. In the other word, all columns will be included in the
DatabaseTableModel as the table columns. The third parameter is the FROM statement. Putting
it together, it is the same as the SQL statement “SELECT * FROM sales”.

If you only want to include some columns to this table model, you could use the following
code to only select two columns.

DatabaseTableModel tableModel = new DatabaseTableModel(connection, "ProductName, ProductSales", " sales");

Or if you want to join several tables in the database, you can use list tables in the FROM
statement just like in SQL. See below for an example to join both “sales” table and the “items”
table.

DatabaseTableModel tableModel = new DatabaseTableModel(connection, "*", " sales, items");

You can even include a JOIN statement as part of the FROM statement.

DatabaseTableModel tableModel = new DatabaseTableModel(connection, "*", "sales LEFT JOIN items on
sales.ProductName = items.ProductName");

Again, please refer to any SQL documentation to find out the details of the SQL syntax.

Sorting

Even though creating a DatabaseTableModel is simple, it has all the features built in.
DatabaseTableModel implements ISortableTableModel which means it is sortable. If you set
DatabaseTableModel to a SortableTable, clicking on the table header can sort the column.
Multiple column sorting is supported as well. Please note, the sorting is happening in the
database. Because it doesn’t have to load the records, it is much faster than sorting using Java
as in our JIDE Grids’ SortableTableModel. For the same test case with 200k rows, the sorting
only took 0.7 seconds. If you know user will sort certain columns more often than other
columns, you can index those columns using the database indexing feature to future improve
the speed.

Filtering

DatabaseTableModel implements IFilterableTableModel. It has addFilter method. The Filter
actually has the logic to filter values. However we introduced an interface called
SqlFilterSupport. As long as the filter implements this interface, DatabaseTableModel can
understands it and knows how to translate the filter to the SQL WHERE statement.

See below from a simple comparison of the built-in Filters and the corresponding WHERE
statement.

Filter SQL WHERE Description

EqualFilter = Equal
NotEqualFilter <> Not equal
GreaterThanFilter > Greater than
LessThanFilter < Less than

COPYRIGHT © 2002-2008 J IDE SOFTWARE. ALL RIGHTS RESERVED

5

GreaterOrEqualFilter >= Greater than or equal
LessOrEqualFilter <= Less than or equal
BetweenFilter BETWEEN Between an inclusive range
NotBetweenFilter NOT BETWEEN Not between an inclusive range
LikeFilter LIKE Search for a pattern. % is the wildcard for any chars

and _ is the wildcard for one char.
NotLikeFilter NOT LIKE Search for opposite of a pattern
InFilter IN If you know the exact value you want to return for at

least one of the columns
NotInFilter NOT IN If you know the exact values you want to exclude

See below for an example of adding an InFilter for the column 3 of a DatabaseTableModel.

databaseTableModel.addFilter(3, new InFilter(new Object[]{45, 46, 77}));
databaseTableModel.setFiltersApplied(true);

Because the filtering is happening in the database, the speed is a lot faster. For the same
test case with 200k rows, the filtering only took 0.7 seconds, the time spent on running one SQL
query.1

Caching and Performance

You may wonder how much memory or how many seconds it will use to create a new
DatabaseTableModel that has a lot of rows. The answer is it is instant and uses almost no
memory for most JDBC drivers2. The reason is obviously. It is just one SQL call to the database.
No records are loaded. The record for a row is loaded only before the table displays that row.
We will only load the first several rows that are currently visible. While users page up/down or
scroll up/down in the table, DatabaseTableModel will then load those rows just before they are
displayed. We also cache all the rows that are ever loaded so that we don’t need to ask the
database for the same rows again. Of course, if the database table is changed, you can tell the
DatabaseTableModel to invalidate the cache so that next time it will ask the database for the
rows again.

1 It is not the FilterableTableModel’s filtering algorithm or the SortableTableModel’s sorting algorithm are slower than
the algorithms used in the database. Our test indicates, once the records are loaded in memory, the performance is
of FilterableTableModel and SortableTableModel is actually 10% to 20% faster. The slowness comes from loading the
records. The DatabaseTableModel will not load all the records while doing filtering and sorting. That’s why it is faster.
2 The statement is actually depending on the JDBC driver. We tested with four JDBC drivers – Derby, Hsql, MySql and
PostgreSql. It shows for Derby and Hsql don’t load the whole record when the executeQuery is called. However for
PostgreSql and MySql, it will load the all the records. Please read the link below for more information.

http://dev.mysql.com/doc/refman/5.0/en/connector-j-reference-implementation-notes.html

http://dev.mysql.com/doc/refman/5.0/en/connector-j-reference-implementation-notes.html

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

6

Paging Support
Even though DatabaseTableModel provides the caching feature to prevent using too much

memory when loading a large database table, it is still not easy to use scroll bar to navigate
through several thousands or millions of rows. That’s why we introduce the paging support.

PageNavigationSupport
PageNavigationSupport is an interface to support paging on a table model or a list model. It

has methods to get/set the page size, the current page index, the total row count and methods
to navigate the pages. It also supports PageNavigationListener which will tell you when the
current page index changes, the page size changes or total page count changes.

public interface PageNavigationSupport {
 int getPageSize();
 void setPageSize(int pageSize);
 int getCurrentPage();
 void setCurrentPage(int page);
 int getPageCount();
 int getTotalRecordCount();
 void setTotalRecordCount(int totalRecordCount);
 void nextPage();
 void previousPage();
 void firstPage();
 void lastPage();
 void addPageNavigationListener(PageNavigationListener l);
 void removePageNavigationListener(PageNavigationListener l);
 PageNavigationListener[] getPageNavigationListeners();
 void firePageNavigationEvent(Object source, int id, int oldValue, int newValue);
}

The methods defined on PageNavigationSupport can be divided into three categories. The
first category is for the pagination, for example, how many records in the model
(setTotalRecordCount) and what’s the page size (setPageSize). The PageNavigationSupport
knows how to paginate the model once it has the information. The second category is the
navigation part. You can use the setCurrentPage method to jump to any page or use
firstPage/lastPage/nextPage/previousPage to go back and forth among the pages. The third
category is the support for the PageNavigationListener. It will tell you what happen so that you
can load/unload pages in/from memory or display the current page index on UI etc.

AbstractPageTableModel and DefaultPageTableModel
AbstractPageTableModel provides the abstract implementation for the interface

PageNavigationSupport. It implements all the methods on PageNavigationSupport but
introduces two abstract methods – pageCountChanged and pageIndexChanged to let its
subclasses to implement. Most likely, you don’t need to use this abstract implementation
directly in your code but use one of its concrete subclasses.

DefaultPageTableModel is the concrete implementation. DefaultPageTableModel uses the
table model wrapper design pattern as we used in JIDE Grids to implement SortableTableModel
and FilterableTableModel. It can wrap any TableModel and paginate it. The current page is

COPYRIGHT © 2002-2008 J IDE SOFTWARE. ALL RIGHTS RESERVED

7

nothing but a row index mapping maps from the visual row index to the actual row index in the
actual TableModel. When the current page index changes, it will recreate a new row index
mapping that maps to another group of the rows in the actual TableModel.

We also introduced AdvancePageTableModel to support sorting and filtering in a paged
model scenario. We will cover it in the Hibernate section.

PageNavigationBar
To make it easy to use the PageNavigationSupport, we created PageNavigationBar to

provide a user interface to do the navigation.

See below for a screenshot.

The first button is to jump to the first page. The next button is to jump to the previous page.

In the middle, it is the page index field. It shows the current page index and the total page
count. Then there is the next page button and the last page button.

Note the page index field can also be used as the record index field. User can click on the
page icon to show a context menu to switch to the record navigation mode.

In the record navigation mode, the display in the field will be the current record index and

the total record count.

You can type in the page index in the field directly and press ENTER to jump to the page. All

known hot keys are supported in the page/record index field. PageUp and PageDown is the
same as clicking on the previous page button and the next page button, respectively. UP and
DOWN key will go to the previous record or the next record. CTRL-PageUp will go the first record
in the current page. CTRL-PageDown will go to the last record in the current page. CTRL-Home
and CTRL-End is the same as clicking on the first page button and the last page button,
respectively. The Left/Right/Home/End keys are not used as they are taken by the text field. To
avoid the confusion, the hotkeys work the same way in the page navigation mode and the
record navigation mode.

Creating a PageNavigationBar is very easy. You just need to call

PageNavigationBar bar = new PageNavigationBar(table);

The table can be any JTable or one of JIDE tables. Although PageNavigationBar only works
with PageNavigationSupport, you don’t have to create a table model that supports
PageNavigationSupport beforehand because PageNavigationBar will create a

COPYRIGHT © 2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED

8

DefaultPageTableModel for you if it doesn’t see a model in the table that supports
PageNavigationSupport. As I mentioned earlier that DefaultPageTableModel works with any
table model, thus PageNavigationBar can work with any tables.

In fact, since we mostly discuss about tables, we tend to ignore the fact that
PageNavigationBar supports JList as well. PageNavigationSupport is a general interface that
doesn’t tie to TableModel. There are AbstractPageListModel and DefaultPageListModel as well
to support PageNavigationSupport for JList. Thus PageNavigationBar can be used on JList like
this.

JList list = …;
PageNavigationBar bar = new PageNavigationBar(list);

Hibernate Support
Although using JDBC and SQL to access the database is still the most efficient way, it is easy

to get tedious and difficult to maintain over the time. That’s why people introduced relational
database mapping to map from the database tables and records to Java objects. Obviously,
manipulating a Java object is much simpler than changing a record in a database table. There are
several projects in this area and Hibernate is probably the most popular one.

There are a bunch of setup tasks you need to do before you can start to use Hibernate. You
can refer to http://www.hibernate.org for more information. Once you set it up, the first thing
you need to do in your code is

Session session = HibernateUtil.getSessionFactory().getCurrentSession();

The Session class to Hibernate is the same as the Connection class to JDBC. In order to get all
the objects from a table called “sales”, you can do

 Criteria criteria = session.createCriteria(Sales.class);
 List list = criteria.list();

Note that we use Sales.class as an example. In order to work with Hibernate, we will have to
create a class called Sales and maps to the “sales” table. The list is a java.util.List that contains all
the Sales objects. You can consider it as POJO which has getters and setters for properties. Once
you have that, you can use the following code to create a table model.

HibernateTableModel tableModel = HibernateTableModel(session, list, Sales.class);

The table model created using the code above is just a regular table model that has all the
Objects. So if you set it to a SortableTable or wrap into a DefaultPageTableModel to paginate it,
it won’t benefit anything from Hibernate. If the list is small, you can certainly use it this way.
However if the list is huge, we suggest you to use HibernatePageTableModel instead of
HibernateTableModel.

http://www.hibernate.org

COPYRIGHT © 2002-2008 J IDE SOFTWARE. ALL RIGHTS RESERVED

9

HibernatePageTableModel extends AdvancePageTableModel which supports filtering,
sorting and paginating. AdvancePageTableModel implements all the features and only leaves
the refreshData method to its subclasses to implement. The refreshData method looks like this.

void refreshData(SortItemSupport sortItem, FilterItemSupport filterItem, int page, int pageSize);

The refreshData method takes the sort orders, the filters, the page size and the current page
etc information. All the information together is enough to determine the data for the current
page. Hibernate provides a class called Criteria. Criteria has addOrder(Order) which can be
created from SortItemSupport. It also has add(Criterion) method which can be created from
FilterItemSupport. It also has setFirstResult and setMaxResult methods which can be used to
fetch a certain page. At the end, criteria.list() to get the List of Objects for the current page and
create a HibernateTableModel for it.

What’s Next
JIDE Data Grids is still in beta. It is the first product in JIDE that deals with the database.

There are still many features that we want to add to this product but haven’t got a chance to do
so.

1. Editable table model: allow adding/removing/modifying records directly from the
DatabaseTableModel and HibernateTableModel. PageNavigationBar can be enhanced
to add more buttons for this purpose.

2. Use a special row header to indicate the cursor and newly inserted row position and in
the RecordSet.

3. Use the information from the ResultSetMetaData to format the column using
ObjectConverter and CellRenderer. Use special icon to indicate a column is
autoIncrement, searchable, nullable etc.

4. Support grouping using the database.

If you have any feedbacks and suggestions, please feel free to email us or post on the forum.

	Contents
	Purpose of This Document
	Overview
	Database Support
	ResultSetTableModel
	DatabaseTableModel
	Sorting
	Filtering
	Caching and Performance

	Paging Support
	PageNavigationSupport
	AbstractPageTableModel and DefaultPageTableModel
	PageNavigationBar

	Hibernate Support
	What’s Next

