
JIDE Code Editor Developer Guide  
Contents 
PURPOSE OF THIS DOCUMENT ............................................................................................................ 3 

FEATURES .......................................................................................................................................... 3 

CODE EDITOR ..................................................................................................................................... 4 

CREATING A CODEEDITOR ................................................................................................................................. 4 
CARETMODEL ................................................................................................................................................ 4 
SELECTIONMODEL ........................................................................................................................................... 5 

SYNTAX COLORING ............................................................................................................................. 5 

TOKENMARKER .............................................................................................................................................. 5 
LANGUAGESPEC AND LANGAUGESPECMANAGER................................................................................................... 6 

STATUS BAR ....................................................................................................................................... 7 

ADDING A STATUS BAR ..................................................................................................................................... 7 
CREATING YOUR OWN STATUS BAR ITEM FOR CODEEDITOR ...................................................................................... 7 
INTEGRATE INTO YOUR APPLICATION STATUS BAR ................................................................................................... 8 

MAGIN AREA ..................................................................................................................................... 9 

CREATE YOUR OWN MARGIN .............................................................................................................................. 9 
LINENUMBERMARGIN ................................................................................................................................... 10 
MARGINPAINTER AND LINEMARGINPAINTER ..................................................................................................... 11 
CODEFOLDINGMARGIN .................................................................................................................................. 12 

MARKER AREA AND CODE INSPECTION ............................................................................................. 13 

MARKER AND MARKERMODEL ........................................................................................................................ 13 
CODE INSPECTION ......................................................................................................................................... 13 
MARKER EYE AND MARKER STRIPES.................................................................................................................. 14 
PAINT MARKER WITH SYNTAXSTYLE .................................................................................................................. 15 

CODE FOLDING ................................................................................................................................. 15 

FIND AND REPLACE .......................................................................................................................... 15 

FINDANDREPLACE ......................................................................................................................................... 16 
FINDANDREPLACETARGET .............................................................................................................................. 16 
FINDANDREPLACEPANEL ................................................................................................................................ 17 
FINDRESULT AND FINDRESULTS ....................................................................................................................... 17 
LISTENER SUPPORT ........................................................................................................................................ 18 

LAZY LOADING ................................................................................................................................. 19 

LOADING LARGE FILE ...................................................................................................................................... 19 
SAVING LARGE FILE ........................................................................................................................................ 19 



COPYRIGHT ©  2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED 

2 

PAGELOADEVENT .......................................................................................................................................... 19 
PERFORMANCE ............................................................................................................................................. 19 
POTENTIAL DISABLED FEATURES........................................................................................................................ 20 

SHORTCUT KEYS ............................................................................................................................... 20 

LINE BREAK ...................................................................................................................................... 25 

OTHERS ........................................................................................................................................... 27 

 



COPYRIGHT ©  2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED 

3 

 

Purpose of This Document 
JIDE Code Editor is a special text editor for source code of computer languages. This 

developer guide is designed for developers who want to learn how to use JIDE Code Editor in 
their applications. 

Features 
All features you found in JIDE Code Editor are related to source code. If you want to find an 

editor that can be used to view or edit source code of a computer language, regardless of it is an 
existing computer language or a new language you created, this is the right component for you. 
Here are the highlights of features. 

v Syntax coloring for 25 different languages 

v Virtual white space 

v Reads huge files in very short time and consumes much less memory than the file's size 

v Displays new line, space and tab using special graphics 

v Handles different line break types depending on the platforms 

v Handles tab either as white spaces or as tab. 

v Bracket matching 

v Code folding 

v Optional customizable margin components including pre-built line number margin and 
code folding margin 

v Optional customizable status bar including pre-build status bar items for caret position, 
caret overwrite/insert state etc. 

v Customizable font style and syntax color 

v Customizable shortcut keys for all commands used by the editor 

v Multiple clipboard copy and paste 

v Drag-n-drop selection support. Rectangular selection 

v Find and Replace 

Ø Allows literal, regular expression as well as wildcard. (Ctrl-F and Ctrl-R) 

Ø Incremental search (F3) 

Ø Quick search (Alt-F3) 



COPYRIGHT ©  2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED 

4 

Ø Customizable search all and replace all 

v Extensive commands to operate on the code editor (refer to Shortcut Editor Dialog to 
list of all commands) 

v Optional inspection area to show line markers for errors, warnings, todo’s etc.   

v Auto indent 

v Column Guides 

v Column selection 

Code Editor 
CodeEditor is the main class for JIDE Code Editor. 

Creating a CodeEditor 

CodeEditor editor = new CodeEditor(); 
editor.setText(“…”); // the text 

editor.setFileName("..."); // the file name you would like CodeEditor to read in case you have a huge file 

Once you create a CodeEditor, you can add it to any place you want. CodeEditor has its own 
scroll bars so you don’t need to add it to a JScrollPane as you did to JTextArea. 

CaretModel 
There are several important modules in CodeEditor. CaretModel is one of them. CaretModel 

is a model that represents the position of a caret in code editor. In Swing’s JTextComponent and 
its subclasses, caret position is just one integer value which is the offset in the Document. 
However in CaretModel, there are three different types of positions. 

v Offset: The same as in JTextComponent. It is the number of characters before the 
current caret position. 

v Model caret position: There are two values in model caret position – line and column. It 
is the caret x and y coordinate as you see on the screen. We need model position 
because we want to support virtual spaces after the end of a line. With visual spaces 
turned on, you can place caret at a place beyond the end of a line. In any positions 
beyond the end of line, the offset will be the same. Only model caret positions are 
different.  

v View caret position: Same as model caret position, there are also two values in view 
caret position – line and column. We introduced both view caret position and model 
caret position because of the need from code folding feature. When there is no code 
folding, view caret position is the same as model caret position. If there is code folding, 
model caret position is the visual position before the code is folded and view caret 
position is the visual position after the code is folded.  



COPYRIGHT ©  2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED 

5 

There are methods in CodeEditor to convert from one of the positions to another. You may 
need to use those positions. Here are a few rules. 

v If you want to modify the Document of the CodeEditor at its current caret position, you 
probably should use offset as that’s the actual position in the Document.  

v If you want to display the caret on screen, you should always use view caret position. 
When we handle keyboard action for arrow keys, we use view caret position to do it. For 
example, right key will cause view caret position’s column value to increase by 1; up key 
will make view caret position’s line value decrease by 1. 

v When you want to get to certain line number of in code editor, you use model caret 
position. The CaretModelPositionStatusBarItem displays the logical position. If you 
double click on it to prompt “go to line” dialog, the line number you input is interrupted 
as model caret position so that it doesn’t change with code folding status.  

SelectionModel 
SelectionModel is used to keep track of the text selection. DefaultSelectionModel is the 

default implementation of SelectionModel.  

There are two values stored in a SelectionModel. They are the start offset and the end 
offset.   

SelectionModel also supports column selection mode. In some editors, it is called vertical 
selection or rectangular selection. You can call setColumnSelectionMode and set it to true or 
false. To improve customer experience, JIDE CodeEditor would enter column selection mode 
automatically if the customer press CTRL key while mouse dragging over the text. 

There is also SelectionListener support. Anyone can add listener to SelectionModel to get 
notification when selection changes. 

In current version, we only support continuous selection. We don't have a plan to support 
non-contiguous selection so far. 

Syntax Coloring 
Syntax coloring is one of the basic features provided by CodeEditor. In order to implement 

this feature the fastest way, we leveraged an open source project at http://syntax.jedit.org/ 
called jEdit Syntax Package. This project is a largely simplified version of jEdit project. jEdit 
project is GPL-ed which prevents many commercial companies from using it. But jEdit Syntax 
Package, the project we are using, is MIT license which means it can be used in commercial 
software. 

TokenMarker 
The main class is TokenMarker which is from jEdit Syntax Package. A token marker splits a 

line of text into tokens. Each token carries a length field and an identification tag that can be 
mapped to a color for painting that token. jEdit Syntax Package includes the token markers for 
the following languages or files: 

http://syntax.jedit.org/


COPYRIGHT ©  2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED 

6 

C, C++, Eiffel, HTML, IDL, Java, JavaScript, Makefile, Patch/diff, Perl, PHP, PLSQL, Java 
properties, Python, Shell script, SQL, TeX, TSQL, Verilog, VHDL, XML. 

We will add more TokenMarkers for other commonly used languages in the future based on 
user feedbacks. You can also create your own TokenMarker. The source code of all 
TokenMarkers can be downloaded from the link above. You can study the code to find out how 
to make one.  

TokenMarker and its subclasses use 11 kinds of identification tags to mark a token. They are 
NULL, COMMENT1, COMMENT2, LITERAL1, LITERAL2, LABEL, KEYWORD1, KEYWORD2, 
KEYWORD3, OPERATOR and INVALID. As you can see, those tags are language neutral which 
means for any language, you have to use one of the tags above for all tokens. This design 
simplified the token marker but certainly has its limitation. So it will be one area where our 
future release will improve. 

CodeEditor has setTokenMarker method so you can set any TokenMarker to it. However we 
suggest you to use a more systematic way through LanguageSpec and LanguageSpecManager. 

LanguageSpec and LangaugeSpecManager 
LanguageSpec defines several properties for a language type, for example, the name of the 

language, possible suffixes, the token marker, non-word delimiters, the string used for line style 
comment, the strings used for block style comment etc. 

LanguageSpecManager puts all language specs together so that you can look it up by the 
language name. Once you have the LangaugeSpec, you can call configureCodeEditor method on 
it to set all the properties of that language in one shot. If you use CodeEditorDocumentPane, you 
will find setLanguageName method on CodeEditorDocumentComponent which uses the way 
mentioned above to configure a code editor easily.  

See below for an example code to create a CodeEditorDocumentComponent. 

 CodeEditorDocumentComponent createDocumentComponent(String resourceName, String languageName) { 

        CodeEditorDocumentComponent documentComponent = new 
CodeEditorDocumentComponent(resourceName); 
        try { 

            documentComponent.open(CodeEditorDemo.class.getClassLoader(), resourceName); 
        } 

        catch (IOException e) { 
            e.printStackTrace(); 
        } 

        documentComponent.setLanguageName(languageName); 
        return documentComponent; 
    } 



COPYRIGHT ©  2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED 

7 

Status Bar 

Adding a status bar 
After you create a CodeEditor, you can create a CodeEditorStatusBar for this CodeEditor. 

Typically, you can add CodeEditor to CENTER of a border layout panel and add status bar to the 
SOUTH of the panel. In this case you will have one status bar per editor. See code below. 

JPanel panel = new JPanel(); 

panel.setLayout(new BorderLayout()); 
panel.add(editor); 

panel.add(new CodeEditorStatusBar(editor), BorderLayout.AFTER_LAST_LINE); 

You can also need to create a common status bar shared by all cell editors. If so, you still 
create a CodeEditorStatusBar first, then you need make sure you call setEditor method 
whenever active editor changes. 

StatusBar statusBar = new CodeEditorStatusBar(); 

 

// when the active editor changes, you call 
statusBar.setEditor(activeEditor); 

You may also already have a status bar for your application and you want to use it instead of 
creating a new status bar just for code editor. If so, you can use StatusBarItem directly. Let’s say 
you want to add a status bar item for caret position to your existing status bar. 

StatusBar statusBar = new StatusBar(); // an existing status bar 
CaretModelPositionStatusBarItem caretPosition = new CaretModelPositionStatusBarItem ();  

statusBar.add(caretPosition); 
 

// when the active editor changes, you call 
caretPosition.setEditor(activeEditor); 

Creating your own status bar item for CodeEditor 
All status bar items for CodeEditor should implement interface CodeEditorStatusBarItem. 

This interface has methods like set/getEditor(), initialize(), registerListener(editor), and 
unregisterListener(editor). Abstract class AbstractCodeEditorStatusBarItem extends 
LabelStatusBarItem and implements set/getEditor() methods and leave the rest three methods 
for you to implement. 

Here is a real example in our source code to create a status bar item that displays caret 
overwrite/insert status. 

public class CaretOverwriteStatusBarItem extends AbstractCodeEditorStatusBarItem implements 
PropertyChangeListener { 

 

    public final static String INSERT = "Insert"; 
    public final static String OVERWRITE = "Overwrite"; 



COPYRIGHT ©  2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED 

8 

 

    public CaretOverwriteStatusBarItem() { 
    } 
 

    public CaretOverwriteStatusBarItem(String name) { 
        super(name); 

    } 

 
    public void initialize() { 

        setHorizontalAlignment(JLabel.CENTER); 
        setPreferredWidth(80); 
    } 

 

    public void registerListener(CodeEditor editor) { 

        if (editor != null) { 
            editor.addPropertyChangeListener(this); 
            setText(editor.isOverwriteEnabled() ? OVERWRITE : INSERT); 

        } 
    } 

 

    public void unregisterListener(CodeEditor editor) { 
        if (editor != null) { 

            editor.removePropertyChangeListener(this); 
        } 
    } 

 
    public void propertyChange(PropertyChangeEvent evt) { 

        if (CodeEditor.PROPERTY_OVERWRITE_ENABLED.equals(evt.getPropertyName())) { 
            setText(Boolean.TRUE.equals(evt.getNewValue()) ? OVERWRITE : INSERT); 
        } 

    } 

} 

Integrate into your application status bar 
 As long as you use StatusBar component provide by JIDE Components product, you can 
easily add special status bar items to the common status bar used by your application. We 
currently provide three status bar items that you can use. They are  

v CaretModelPositionStatusBarItem: This status bar item shows the caret position. We also 
have CaretOffsetStatusBarItem and CaretOffsetStatusBarItem to show the caret view 
position and offset position respectively. But the caret model position is probably the only 
position that makes sense to your end user. 

v LineBreakStatusBarItem: This status bar item shows the line break type of the editing text. 



COPYRIGHT ©  2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED 

9 

v CaretOverwriteStatusBarItem: This status bar item shows the caret’s override or insert 
status. It will change with CodeEditor’s setOverwriteEnabled method to indicate if the 
CodeEditor is in inserting mode or overwriting mode. 

v EditableStatusBarItem: This status bar item shows the editable attribute of a CodeEditor. 

All those status bar items can be added to the StatusBar you already have to make the code 
editor seamlessly integrate with your application. 

Magin Area 
Magin Area is a special area on the left side of a code editor. Usually the content in margin 

area will scroll vertically along with the text in code editor. A typical example is line number 
margin. In fact, you can add many margin components into the Margin Area. Line number is just 
one of those margins. 

A MarginArea is created automatically by CodeEditor. You can call editor.getMarginArea() to 
get it. Then call addMarginComponent(Margin magin) to add a new margin to it. By default, we 
only add one margin which is LineNumberMargin which we will talk about in later. You can call 
editor.setLineNumberVisible(true/false) to show or hide the line number margin. 

Create your own margin 
All margins must implement an interface called Margin. We also provide AbstractMargin 

which implements most of the methods in Margin. 

Margin should paint itself completely instead using any child components. You don’t want 
to add child components to margin mainly because the margin will scroll along with the text in 
code editor and is usually very tall. You don’t want to deal with any child components or layout 
manager for this particular component. Taking line number margin for example: say we have a 
code editor has 1000 lines and 100 lines are visible in the view port, you of course can create 
1000 JLabels and add them to the margin. Or you can paint the 100 strings on fly just for the 
visible 100 lines. Obviously the second approach is much more efficient. Margin has 
paintMargin method which you must implement in order to paint the margin. 

There are two categories of margins – line margin or non-line margin. 

The line margin paints its content line by line. A typical example in this category is  the line 
number margin. Each painting code will just paint the rectangle area belong to that line. In this 
case, we created AbstractLineMargin to make it simple. You need to implement the 
paintLineMargin method in its subclass. Internally, we implemented the paintMargin method on 
Margin interface and delegate to paintLineMargin to paint line by line. As you can see below, all 
you need to do is to paint the content for a particular line at the specified rectangle. You should 
never paint it outside the rectangular area. 

    public void paintLineMargin(Graphics g, Rectangle rect, int line) { 
        String lineNumber = "" + (line + 1); 

        g.setColor(new Color(128, 0, 0)); 



COPYRIGHT ©  2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED 

10 

        g.drawString(lineNumber, rect.x + rect.width – 
getEditor().getPainter().getFontMetrics().stringWidth(lineNumber) - 3, 

                rect.y + getEditor().getPainter().getFontMetrics().getAscent()); 
    } 

There are many margins in this category. Breakpoint margin and bookmark margin are two 
more such examples. 

The non-line margin is the opposite of the first category. It is not limited by one line but 
ranges from one line to another line. In this you don’t want to paint line by line but paint it 
across many lines. A typical example is code folding margin. As the code folding ranges from a 
start line to an end line, you just paint the whole range in one shot. For the margins in this 
category, you need to extend AbstractMargin directly and implements the paintMargin method. 
For performance reason, you should check the first visible line of the code editor and the total 
visible line count. If you know you will paint outside the visible area, just don’t paint. 

LineNumberMargin  
Now let’s cover look at an example. Here is the LineNumberMagin. LineNumberMagin 

extends AbstractLineMargin as you may expect. 

 
Figure 1 LineNumberMargin 

Here is the code of LineNumberMargin.  

public class LineNumberMargin extends AbstractLineMargin { 
    private static Color DEFAULT_FOREGROUND = new Color(128, 0, 0); 
 
    public LineNumberMargin(CodeEditor editor) { 
        super(editor); 
        setForeground(DEFAULT_FOREGROUND); 
    } 
 



COPYRIGHT ©  2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED 

11 

    public void paintLineMargin(Graphics g, Rectangle rect, int line) { 
        CodeEditor editor = getCodeEditor(); 
        String lineNumber = "" + (editor.viewToModelLine(line) + 1); 
        g.setColor(getForeground()); 
        g.drawString(lineNumber, rect.x + rect.width - editor.getPainter().getFontMetrics().stringWidth(lineNumber) - 
3, 
                rect.y + editor.getPainter().getFontMetrics().getAscent()); 
    } 
 
    public int getPreferredWidth() { 
        CodeEditor editor = getCodeEditor(); 
        String maxLineNumber = "" + (editor.getLineCount() + 1); 
        return editor.getPainter().getFontMetrics().stringWidth(maxLineNumber) + 6; 
    } 
 
    public String getToolTipText(int line) { 
        return "" + (line + 1); 
    } 
} 

MarginPainter and LineMarginPainter 
At the beginning, you most likely use one margin for one purpose. But sooner or later, you 

will find out that’s a waste of screen space. You will start to think if you can combine several 
margins that are not very busy into one margin. See screenshot below for an example. What you 
see here is a brace matching margin over the code folding margin. Code folding margin could be 
very busy but brace matching is not because there is only one brace matching at one time. So 
it’s a perfect use case to paint the brace matching over the code folding to save some space. 

 
Figure 2 An example of MarginPainter 

Now let’s see how we do this. We added addMarginPainter method on AbstractMargin. 
Assuming you will extend AbstractMargin in your margin. If so, you can add your own 
MarginPainter to it. 

MarginPainter is a painter interface which can paint the margin area. This painter is mainly 
used to add extra content to an existing margin. You can add many MarginPainters to 
AbstractMargin In order to decide the order to paint them, each MarginPainter has layer index. 
The lower the layer index is, the earlier it gets painted. In the other word, the painter has a 
higher index will overwrite those that have lower index. The default layer index is defined as 
LAYER_DEFAULT_INDEX in MarginPainter interface. The original content of the margin is painted 
on this layer. For example, in code folding margin, code folding information is painted on the 
layer of index LAYER_DEFAULT_INDEX. If you want to your painter painted before code folding 
information, use a layer index smaller than LAYER_DEFAULT_INDEX. If you want it painted after 
the code folding, use an index larger than LAYER_DEFAULT_INDEX. 



COPYRIGHT ©  2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED 

12 

Here is the code of how to adding a margin painter. The result is what the screenshot above 
shows. 

        CodeFoldingMargin margin = new CodeFoldingMargin(); 
        margin.addMarginPainter(new BraceMatchingMarginPainter()); 

        editor.getMarginArea().addMarginComponent(margin); 

MarginPainter is mainly for non-line margin. For line margin, there is addLineMarginPainter 
on AbstractLineMargin. It is almost the same as MarginPainter except it just paints the rectangle 
area of a particular line. 

CodeFoldingMargin 
CodeFoldingMargin is a special margin that paints the code folding information. We 

mentioned it several times when we cover the basic of margin. Now let’s say how to use it. 

 
 

 
 

 
 

 
Figure 3 CodeFoldingMargin 

As you can see from the screenshot above, each code folding has a start and an end (the 1st 
screenshot above). Then there is a line between them to connect them. When it is folded, there 
is just one icon to indicate where the folding is (the 2nd screenshot above), or when the code 
folding starts and ends on the same line, you will only see one icon when it either expanded or 
collapsed (the 3rd and 4th screenshots above). 

In order to allow you to customize how the code folding is painted, we added 
setCodeFoldingPainter to allow you set a CodeFoldingPainter.  CodeFoldingPainter has all 
methods you can implement in order to paint each part of the code folding. Here are a few 
examples after we set our own customized painter. 



COPYRIGHT ©  2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED 

13 

  
Figure 4 Different CodeFoldingPainter to mimic Eclipse and NetBeans 

Marker Area and Code Inspection 
Marker Area is a special area on the right side of a code editor, after the vertical 

scroll bar. See the picture on the right for an example. Since it appears outside the 
scroll bar, it doesn’t scroll with the text in code editor. So you can use it to display 
the lines which have errors, todo’s or highlights in the text. Users can see all those in 
one shot no matter how large the text is. They can also click on the line marker on 
the inspection area and jump right to the line. 

Marker and MarkerModel 
Marker represents a range of text in code editor. It has a start offset and an end 

offset. By default, there are two types of markers - error and warning. But you can always define 
your own types of markers. You can also associate a tool tip with a marker. The tool tip will be 
shown when user mouse moves over the marker stripe. 

MarkerModel is the model class that stores all the markers in a code editor. You can use this 
class to add/remove/update markers. The change will be shown on the MarkerArea 
immediately. 

Code Inspection 
The main usage of MarkerArea is for code inspection.  

You can add your own code inspector to inspect the code. The inspector could be a 
grammar inspector as most editors for IDEs have. But it also can be any kind of code inspectors 
that will scan the code to detect the information it is looking for. For example you can have 
TODO inspector to detect any TODO strings in the code. 

See below for an example of grammar inspection. Please note, we used a PHPParser class 
that can parse php code and generate grammar errors and warnings in order to add them as 
Marker. 

        _editorForPhp.addCodeInspector(new CodeInspector() { 

            public void inspect(final CodeEditor codeEditor, final MarkerModel markerModel) { 

                PHPParser parser = new PHPParser(); 
                parser.setPhp5Enabled(true); 

                parser.addParserListener(new PHPParserListener() { 
                    public void parseError(PHPParseErrorEvent e) { 
                        markerModel.addMarker( 

                                codeEditor.getLineStartOffset(e.getBeginLine() - 1) + e.getBeginColumn() - 1, 

                                codeEditor.getLineStartOffset(e.getEndLine() - 1) + e.getEndColumn() - 1, 

                                Marker.TYPE_ERROR, e.getMessage()); 



COPYRIGHT ©  2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED 

14 

                    } 

 
                    public void parseMessage(PHPParseMessageEvent e) { 
                        markerModel.addMarker( 

                                codeEditor.getLineStartOffset(e.getBeginLine() - 1) + e.getBeginColumn() - 1, 
                                codeEditor.getLineStartOffset(e.getEndLine() - 1) + e.getEndColumn() - 1, 

                                Marker.TYPE_WARNING, e.getMessage()); 

                    } 
                }); 

 
                try { 
                    markerModel.setAdjusting(true); 

                    markerModel.clearMarkers(); 

                    parser.parse(codeEditor.getText()); 

                } 
                catch (ParseException e) { 
                    e.printStackTrace(); 

                } 
                finally { 

                    Runnable runnable = new Runnable() { 

                        public void run() { 
                            markerModel.setAdjusting(false); 

                        } 
                    }; 
                    SwingUtilities.invokeLater(runnable); 

                } 
            } 

        }); 

In the current release, we didn’t provide any build-in parsers except PHPParser which is 
packaged as part of the example. But you can find quite a few parser implementations from the 
web1. As long as the parser can generate a list of errors and warnings with their locations, you 
can use it along with CodeInspector to display them on marker area. 

Marker Eye and Marker Stripes 
MarkerEye is at the top of the marker area. It indicates the inspecting status. The paint of 

MarkerEye is done by a class called MarkerEyePainter. By default, DefaultMarkerEyePainter is 
used. You can always set your own painter by calling setPainter(MarkerEyePainter). 

                                                           

1 There are PHPParser and HDLParser from http://plugins.jedit.org/list.php?category=6. The php one is the one we 
used in our demo. You can also find more from sourceforge.net and java.net. You can also write one yourself using 
tools such as JavaCC. 

http://plugins.jedit.org/list.php?category=6


COPYRIGHT ©  2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED 

15 

MarkerStripe is a panel below the MarkerEye to display all the markers in a marker model. 
The paint of each stripe is done by a class called MarkerStripePainter. By default, 
DefaultMarkerStripePainter is used. You can always set your own painter by calling 
setPainter(MarkerStripePainter). 

Paint Marker with SyntaxStyle 
If you want your marker paint a custmoized SyntaxStyle, please let your marker type greater 

than Marker.TYPE_CUSTOM_STYLE. Please then invoke CodeEditor.getStyles().addStyle(int, 
SyntaxStyle) to define a syntax style for the marker type. 

Code Folding 
JIDE Code Editor supports code folding. We talked about code folding margin which is used 

display code folding information in margin area. Here we will talk about the insider 
implementation of code folding in CodeEditor. All code folding information is kept in 
FoldingModel. You can get it using CodeEditor’s getFoldingModel() method. 

DefaultFoldingModel is the default implementation of FoldingModel. It stores the code 
folding information as FoldingSpan. FoldingSpan has the start offset, the end offset and a 
description. Of course it also has a flag to indicate whether the folding is expanded. The 
description will be used to display in the editor when folding span is collapsed. 

FoldingModel allows you to add your own folding information. In general, you should always 
call setAdjusting to true before you add code folding in batch mode. After you are done adding, 
you call setAdjusting and set it back to false.  

        _editorForJava.getFoldingModel().setAdjusting(true); 
 

        _editorForJava.getFoldingModel().addFoldingSpan(120, 1279, "..."); 

        _editorForJava.getFoldingModel().addFoldingSpan(2013, 2053, "..."); 

…… // add more folding spans 
 
        _editorForJava.getFoldingModel().setAdjusting(false); 

FoldingModel also supports FoldingSpanListener so that you can listen to any changes that 
happen to the FoldingModel. FoldingSpanEvent is the event that is used to deliver the folding 
changes. Please note, in general, you shouldn’t do any update or repaint if the isAdjusting is true 
in the event. For the efficiency, only when you get either FOLDING_SPAN_END_ADJUSTING 
event or the individual event’s isAdjusting is false, you should update. 

Find and Replace 
JIDE Code Editor provides a very flexible find and replace feature. As we can’t anticipate how 

users will use CodeEditor, we designed it so that it allows you to fully customize the way find and 
replace works. It can perform find and replace on one CodeEditor, on several CodeEditors, on 



COPYRIGHT ©  2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED 

16 

part of the text within a CodeEditor (such as the selected text in a CodeEditor), or even on any 
JTextComponent (such as JTextPane, JTextArea etc), a file, a list of files. 

FindAndReplace  
FindAndReplace is the main class in this module. It actually does the matching of the 

searching text with the text to be searched. It keeps track of the find/replace text history. It has 
several flags such as matching cases, matching whole word. It also allows you to use regular 
expression or wildcards during searching.  

Here is the list of commonly used regular expressions. 

  
Here is the list of wild card expressions. 

 

FindAndReplaceTarget 
Although it’s part of JIDE Code Editor, FindAndReplace doesn’t depend on CodeEditor. It 

works on an interface called FindAndReplaceTarget. You can think FindAndReplaceTarget as 
something that has a piece of several pieces of text that need to be searched. Having this 
abstraction level allows FindAndReplace works independently any concrete of text components. 
There are several concrete implementations of FindAndReplaceTarget. 
CodeEditorFindAndReplaceTarget is the one for CodeEditor. 
CodeEditorSelectionFindAndReplaceTarget is the one for the selected text of a CodeEditor. We 



COPYRIGHT ©  2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED 

17 

also have CodeEditorDocumentPaneFindAndReplaceTarget which is for the DocumentPane that 
contains several CodeEditors. 

FindAndReplace can support many FindAndReplaceTargets if you want. A typical example is 
you want to search on the whole CodeEditor or the selected text of a CodeEditor. As we 
mentioned above, they are actually two different targets. So we will add both targets to 
FindAndReplace. But when user does a searching, only one target will be selected and used. This 
is done by the next class we will cover – the FindAndReplacePanel. 

FindAndReplacePanel 
FindAndReplacePanel is the configuration panel for FindAndReplace. All options provided by 

FindAndReplace can be configured in this panel. 

  
Figure 5 Find and Replace Panel used in a dialog 

There are three sections in this panel. The first section is where user input Find text and 
Replace text. As you can see, it keeps the history of the find and replace history in a JComboBox. 
The left arrow button next to “Find what” JCombBox is to show a popup menu to help user to 
input the regular expression or wild card.  

The second section is the target panel. As we mentioned, any number of targets can be 
added to FindAndReplace. FindAndReplacePanel will display them vertically using BoxLayout and 
put a radio button before each one. User can select one target as the active target. 

The last section is the option panel. 

FindResult and FindResults 
FindAndReplace can do interactive searching. If it works on a CodeEditor, you will see the 

matching text is highlighted in CodeEditor. Pressing F3 will highlight the next occurrence (or 
shift-F3 for the previous occurrence), until it reaches the end. If it is in replace mode, a prompt 
dialog will ask user to replace or skip the current occurrence. Opposite to interactive searching, 
there is find all. It will find all the occurrences in one shot without user interaction. In this case, 
we used two classes FindResult and FindResults to store the results. FindResults can have one or 



COPYRIGHT ©  2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED 

18 

more FindResult(s) or FindResults(es) so that it can form a tree structure. FindResultTree can 
display FindResults in a JTree. 

 
Figure 6  FindResults displayed in a tree 

Listener Support 
To perform a find all operation could take a long time. So we need to provide users the 

necessary feedback so that they know what is happening. That’s why we added 
FindAndReplaceListener to FindAndReplace. This listener will use FindAndReplaceEvent to inform 
you when searching starts, ends, when a text is found and when a text is replaced. 

Each event will have a status id and some optional fields depending on what kind of status it 
is. There are five possible statuses in FindAndReplaceEvent. 

See below for a list of possible statuses and which optional fields are available in each 
status. 

SEARCH_STARTED: this event is fired when searching or replacing starts. There is no data in 
this event. 

SEARCH_STARTED_TEXT: this event is fired when it starts to work on a new piece of text. 
getTargetName() will give you the new name. This event will fire even if you just have one piece 
of text, so you can always use this event to find out the name of the text. During searching-all, 
you can use the name to display a status message so that user knows 

SEARCH_FINISHED: this event is fired when searching or replacing is done. If you are doing a 
searching-all, getFindResults() will tell you all the find results. If you are doing a interactive 
searching/replacing, getFindResults() will be null. 

SEARCH_FINISHED_TEXT: this event is fired when searching or replacing is done with a piece 
of text. If you are doing a searching-all, getFindResults() will tell you all the find results. If you 
are doing an interactive searching/replacing, getFindResults() will be null. In either case, 
getTargetName() will always tell you the text name, just like in SEARCH_STARTED_TEXT. 

SEARCH_FOUND: This event is fired when a matching text is found. getFindResult() will 
always be a non-null value which tells you the start and end offset of the matching text. This 
event is fired for both interactive search and search-all. 

SEARCH_REPLACED: This event is fired when a matching text is found and replaced with the 
replacement text. getFindResult() will always be a non-null value which tells you the start and 



COPYRIGHT ©  2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED 

19 

end offset of the matching text. getReplaceText() will tell you the replacement text. This event is 
fired for both interactive replace and replace-all. 

Lazy Loading 
Sometimes, you may feel the need to read huge files, for example, system logs. In this case, 

CodeEditor#setText() would not be a good choice as it takes too much memory to read 
everything into a String. JIDE CodeEditor offers LazyLoadDocument to read/edit those huge files.  

Loading large file 
To load a large file, please use CodeEditor#setFileName() in this case instead of using 

setText. Internally, we will use LazyLoadDocument as the Document class for CodeEditor. 
LazyLoadDocument does not read all the contents from the file immediately. Instead, it reads 
the first page and display it to user right away. While the user scrolls down the pages, the 
LazyLoadDocument will read in more pages when needed. It will also unload pages that are not 
displaying and not edited when the loaded page reaching the maximum pages. You could invoke 
setMaximumPages and setPageLineSize to balance the memory usage and file read chances. By 
default, the maximum pages are 5 and the line size in each page is 10000. 

Saving large file 
After editing, please invoke exportToOutputStream to export the edited text to the 

designated output stream. Please make sure you will not invoke getText or getRawText if the file 
is large. 

PageLoadEvent 
PageLoadEvent is fired each time a new page is being loaded into memory or has been 

finished loading. You can register this listener to LazyLoadDocument to control the UI behavior. 
It could take a few seconds to a few minutes to load a page, depending on how large the file is 
and how fast your computer is. When loading a page, we will use Overlayable feature in JIDE 
Common Layer to display a spinning circle on the editor to give user a hint that something is 
loading. To use this feature, all you need to do is to add codeEditor.createOverlay() to parent 
container instead of adding codeEditor to its parent container. 

Performance 
With the lazy loading feature, the memory usage will be reduced to several pages and it's 

possible to spend more time while loading new pages. Below are some performance benchmark 
FYI. 

To open a log file with its size as 1.54G bytes (5.9 million lines), the UI will be shown up 
within 1 second. It should take very few milliseconds to perform any actions, like select all, 
insert a char, remove a string, undo, redo, etc. However, if the page to be displayed is not 
loaded yet, a page loading process will be triggered. The time spent for page loading depends on 
the page location within the file and the I/O speed of your machine.  



COPYRIGHT ©  2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED 

20 

The memory usage would be 8~9M bytes constantly if nothing edited. The memory usage 
could be increased if you edit any page. Any edited page would not be released for undo/redo 
purpose. 

Potential disabled features 
To avoid blocking the UI, we have to disable some features to support lazy loading if the 

target page is not loaded yet. Those features include bracket highlighting, folding span, TAB 
support. 

Shortcut Keys 
We provided a rich set of shortcut keys for CodeEditor. See below for a table of all available 

shortcut keys. 

Name Shortcut Key Description Method Name on CodeEditor 

Basic Editing 

Backspace BACK_SPACE Delete the previous char at the 
caret position 

backspaceChar 

Delete to Word Start control BACK_SPACE Delete previous chars until it 
see a non-word char. 

backspaceWord 

Delete DELETE Delete the next char at the 
caret position 

deleteChar 

Delete to Word End control DELETE Delete next chars until it see a 
non-word char 

deleteWord 

Delete Current Line control Y Delete current line deleteLine 

Insert Line Break ENTER Insert a line break at the caret 
position 

insertBreak 

Split Line control ENTER Insert a line break at the caret 
position and keep current caret 
position 

splitLine 

Start New Line shift ENTER Start a new line next to the 
caret line and put caret at the 
beginning of the new line. 

startNewLine 

Indent Selection TAB Indent the caret line if no 
selection and all selected lines 
if there is selection. 

indentSelection 

Unindent Selection shift TAB Indent the caret line if no 
selection and all selected lines 
if there is selection. 

unindentSelection 



COPYRIGHT ©  2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED 

21 

Join Lines control shift J Join the next line with caret line 
if no selection, or join all 
selected lines as one line if 
there is selection. 

joinLines 

Toggle 
Insert/Overwrite 

INSERT Toggle the override/insert 
status. 

toggleOverwrite 

Toggle Rectangular 
Selection 

control BACK_SLASH 

alt shift INSERT 

Toggle from regular selection to 
rectangular selection  

setColumnSelectionMode 

Toggle Case control shift U Toggle the case of the selection toggleCase 

Change Caret Position and Selection 

Select All control A Select all the text in the editor selectAll 

Move Caret to Line 
Start 

HOME Move caret to the start of the 
current line2 

moveToLineStart(false) 

Move Caret to Line 
End 

END Move caret to the end of the 
current line 

moveToLineEnd(false) 

Select to Line Start shift HOME Select from the current caret 
position all the way to the line 
start 

moveToLineStart(true) 

Select to Line End shift END Select from the current caret 
position all the way to the line 
end 

moveToLineEnd(true) 

Move Caret to 
Document Start 

control HOME Moves caret to the start of the 
code editor 

moveToDocumentStart(false) 

Move Caret to 
Document End 

control END Moves caret to the end of the 
code editor 

moveToDocumentEnd(false) 

Select to Document 
Start 

control shift HOME Select from the current caret 
position all the way to the 
document start 

moveToDocumentStart(true) 

Select to Document 
End 

control shift END Select from the current caret 
position all the way to the 
document end 

moveToDocumentEnd(true) 

                                                           

2 It supports smart home feature. If there are leading spaces, the first Home key will move caret to the first non-space 
char. The second Home key will move caret to the first position. If you press Home again and again, it will toggle 
between the first non-space position and the first position. 



COPYRIGHT ©  2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED 

22 

Page Up PAGE_UP Move caret one page up moveToPreviousPage(false) 

Page Down PAGE_DOWN Move caret one page down moveToNextPage(false) 

Select to Previous 
Page 

shift PAGE_UP Select from the current caret 
position up by one page 

moveToPreviousPage(true) 

Select to Next Page shift PAGE_DOWN Select from the current caret 
position down by one page 

moveToNextPage(true) 

Move Caret to 
Previous Char 

LEFT Move caret one char left moveToPreviousChar(false) 

Move Caret to Next 
Char 

RIGHT Move caret one char right moveToNextChar(false) 

Select Previous Char shift LEFT Select the previous char of the 
current caret position 

moveToPreviousChar(true) 

Select Next Char shift RIGHT Select the current char of the 
current caret position 

moveToNextChar(true) 

Move Caret to 
Previous Word 

control LEFT Move caret to the previous 
word – the first space char 
before the current caret 
position. 

moveToPreviousWord(false) 

Move Caret to Next 
Word 

control RIGHT Move caret to the next word – 
the first space char after the 
current caret position. 

moveToNextWord(false) 

Select Previous 
Word 

control shift LEFT Select the current caret 
position to the first space char 
before it 

moveToPreviousWord(true) 

Select Next Word control shift RIGHT Select the current caret 
position to the first space char 
after it 

moveToNextWord(true) 

Move Caret to 
Previous Line 

UP Move caret up by one line moveToPreviousLine(false) 

Move Caret to Next 
Line 

DOWN Move caret down by one line moveToNextLine(false) 

Select Previous Line shift UP Select from the caret position 
up by one line 

moveToPreviousLine(true) 

Select Next Line shift DOWN Select from the caret position 
down by one line 

moveToNextLine(true) 

Goto Line control G Prompt a dialog to let user type 
in a line index and scroll to it 

promptGotoLine 



COPYRIGHT ©  2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED 

23 

Select Word at Caret control W Select the current word selectWord 

Select to Matching 
Bracket 

control B Select the current block that 
starts and ends with two 
matching brackets. 

selectToMatchingBracket 

Duplication 
Selection 

control D Duplication the selection. If no 
selection, the caret line will be 
duplicated 

duplicateSelection 

Line Comments control SLASH Using line style comment for 
comment a line or several lines.  

lineComments 

Block Comments control shift SLASH Using block style comment a 
line or several lines. 

blockComments 

Undo/Redo 

Undo control Z Undo the last editing operation  undo 

Redo control shift Z Redo the last undone editing 
operation 

redo 

Clipboard Operations 

Clipboard Cut control X  

shift DELETE 

Cut the currently selected text. 
If nothing is selected, cut the 
current line 

clipboardCut 

Clipboard Copy control C 

control INSERT 

Copy the currently selected 
text. If nothing is select, copy 
the current line 

clipboardCopy 

Clipboard Paste control V 

shift INSERT 

Paste whatever on the 
clipboard to the current caret 
position 

clipboardPaste 

Clipboard Paste with 
Dialog 

control shift V 

control shift INSERT 

Prompt a dialog to allow user 
to select one of the previous 
clipboards and paste it 

pasteWithDialog 

Find And Replace 

Find control F Prompt a dialog to allow user 
to type in a text to search for 

Find 

Find Next 
Occurrence 

F3 Find the next occurrence of the 
searching text. 

findNext 

Find Previous 
Occurrence 

shift F3 Find the previous occurrence of 
the searching text. 

findPrevious 

Replace control R Prompt a dialog to allow user replace 



COPYRIGHT ©  2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED 

24 

to type in a text to replace with 
another text 

Quick Search alt F3 Using the Searchable feature to 
show a popup where user can 
type in a text without using a 
dialog 

quickSearch 

Folding Operations 

Fold Selection control PERIOD Create a folding which contains 
the currently selected text. 

toggleFoldingSelection 

Expand Folding control EQUALS Expand the current folding expandFolding 

Collapse Folding control MINUS Collpse the current folding collapseFolding 

Expand All control shift EQUALS Expand all the foldings expandAll 

Collapse All control shift MINUS Collapse all the foldings. collapseAll 

The table above shows the default shortcut keys for the action. You can always define your 
own action. We used JIDE Shortcut Editor as the editor to configure the shortcut keys. Here is 
the code to create an editor for it. 

DefaultInputHandler inputHandler = (DefaultInputHandler) DefaultSettings.getDefaults().getInputHandler(); 

ShortcutEditor shortcutEditor = new ShortcutEditor(inputHandler.getShortcutSchemaManager(), true); 

See below for a screenshot of the shortcut editor. We put it in a dialog as a demo but you 
can use it anywhere you want as it’s just a JPanel. 



COPYRIGHT ©  2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED 

25 

 
Figure 7 Shortcut Editor for CodeEditor 

Line Break 
There are three kinds of line breaks. If you need to work with different platforms, such as a 

PC running Windows, a web server running Linux, you will have to deal with all these kinds of 
line breaks. 

Windows, and DOS before it and OS/2, uses a pair of CR3 and LF characters to terminate 
lines. UNIX (Including Linux, FreeBSD, AIX, Mac OS X, BeOS, and Amiga) uses an LF character 
only. The Apple Macintosh OS through version 9, finally, uses a CR character only.  

Problems arise when transferring text files between different operating systems and using 
software that is not smart enough to detect the line break style used by a file. E.g. if you open a 
UNIX file in Microsoft Notepad, it will display the text as if the file contained no line breaks at all. 
If you open a Windows file in a UNIX editor, you will see a control character (the CR) at the end 
of each line. Older versions of Perl on Linux would refuse to run any script that used Windows 
line breaks, aborting with an unhelpful error message. 

JIDE Code Editor addressed all those issues by allowing reading and writing using any of the 
line break styles above. 

                                                           

3 CR == ‘\r’ whose value is 0xA and LF == ‘\n’ whose value is 0x0D 



COPYRIGHT ©  2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED 

26 

When CodeEditor’s setText() method is called, we will parse the text and see what line break 
the text uses. If the same line break is consistently used all over the text, we will set the 
lineBreakStyle property to one of the following three values (LINE_BREAK_PC, 
LINE_BREAK_UNIX, LINE_BREAK_MAC). When you call getText(), we will make sure the same 
line breaks are used in the returned text. 

If the line break is not consistently used in the text, we will set the lineBreakStyle property 
to LINE_BREAK_MIXED. You can call setLineBreakStyle to set it to the one you want. If you don’t, 
getText() will use the line break style returned from getDefaultLineBreakStyle(). 

    public int getDefaultLineBreakStyle() { 

        if (SystemInfo.isWindows() || SystemInfo.isMacOSX()) { 
            return LINE_BREAK_PC; 

        } else if (SystemInfo.isMacClassic()) { 
            return LINE_BREAK_MAC; 
        } else if (SystemInfo.isUnix()) { 

            return LINE_BREAK_UNIX; 

        } else { 
            return LINE_BREAK_PC; 

        } 
    } 

To make it easy for end user to control this, we also provided LineBreakStatusBarItem, an 
optional status bar item you can add to your status bar. 

 

   



COPYRIGHT ©  2002-2012 J IDE SOFTWARE. ALL RIGHTS RESERVED 

27 

 
Figure 8 Line Break Status Bar Item 

As you can see in the screenshots above, whenever you open a file, the line break style will 
be displayed on the status bar.  If user clicks on it, they will see a popup menu which allows 
them to change the line break style. This will affect the line break styles used by getText() 
method. 

There is also importText(String in, StringBuffer out) method which can convert from 
whatever line break style to CR only line break style. The opposite direction is done by 
exportText(String in, StringBuffer out) method which converts CR only line break style to the line 
break style specified by lineBreakStyle property.  

Clipboard operation will be affected by line break too. The clipboardCopy() and 
clipboardCut() method will always put the text on the clipboard using line break style specified 
by lineBreakStyle property. On the other hand, clipboardPaste() method can accept a piece of 
text with any line break styles. But it will affect the lineBreakStyle property as setText() does. 

Others 
SearchableBar can work with CodeEditorSearchable to provide easy searching to the 

customer. 

ListDataCodeEditorIntelliHints is the class to help the customer to input the keywords easier. 
However, you need do some customization to feed the ListDataCodeEditorIntelliHints correct list 
for different scenarios. 

Please find the detail implementations on JIDE CodeEditorDemo. 

 


	Contents
	Purpose of This Document
	Features
	Code Editor
	Creating a CodeEditor
	CaretModel
	SelectionModel

	Syntax Coloring
	TokenMarker
	LanguageSpec and LangaugeSpecManager

	Status Bar
	Adding a status bar
	Creating your own status bar item for CodeEditor
	Integrate into your application status bar

	Magin Area
	Create your own margin
	LineNumberMargin
	MarginPainter and LineMarginPainter
	CodeFoldingMargin

	Marker Area and Code Inspection
	Marker and MarkerModel
	Code Inspection
	Marker Eye and Marker Stripes
	Paint Marker with SyntaxStyle

	Code Folding
	Find and Replace
	FindAndReplace
	FindAndReplaceTarget
	FindAndReplacePanel
	FindResult and FindResults
	Listener Support

	Lazy Loading
	Loading large file
	Saving large file
	PageLoadEvent
	Performance
	Potential disabled features

	Shortcut Keys
	Line Break
	Others

