
JideFX Fields Developer Guide

Table of Contents

PURPOSE OF THIS DOCUMENT ... 2

WHAT IS JIDEFX FIELDS .. 2

PACKAGES .. 2

DEPENDENCY ... 2

MASKTEXTFIELD ... 2

INPUTMASK ... 3

CONVERSIONMASK ... 4

REQUIREDMASK ... 4

EXAMPLES ... 5

CUSTOMIZATION ... 5

Change the Mask Character .. 5

FORMATTEDTEXTFIELD .. 6

GROUP-BASED MASK, A.K.A. PATTERN .. 7

Support for any Data Types ... 9

MOUSE AND KEYBOARD SUPPORT .. 11

Spinner Support ... 11

Keyboard Support .. 11

Mouse Support ... 12

PATTERNVERIFIERS .. 14

NUMBER SUPPORT .. 18

DATE AND TIME .. 18

DateFormat Support .. 18

DateTimeFormatter Support .. 20

Additional Built-in PatternVerifiers for the various Date Types ... 23

COMPARISON OF THE TWO TEXTFIELDS .. 24

POPUPFIELD ... 25

DEFINE A POPUPFIELD ... 26

CUSTOMIZE THE POPUP BUTTON ETC. ... 30

FORMATTEDCOMBOBOXES ... 31

SPINNERS ... 33

SPINNERSTYLE .. 34

FORMATTEDTEXTFIELD.ASSPINNER ... 35

COPYRIGHT © 2002-2013 J IDE SOFTWARE. ALL RIGHTS RESERVED

2

Purpose of This Document

Welcome to the JideFX Fields, a collection of text fields and combo-boxes for to JavaFX
platform. This document is for developers who want to develop applications using JideFX Fields.

What is JideFX Fields

This product is all about user input. There are several user input related controls in JavaFX.
They are TextField, TextArea, ChoiceBox, and ComboBox. While they provided the basic features
of those controls, some significant features are missing. That’s why we decided to introduce the
JideFX Fields products to provide enhancements to those input controls.

Packages

The table below lists the packages in the JideFX Fields product.

Packages Description

jidefx.scene.control.field Controls that extend TextField

jidefx.scene.control.combobox Controls that extend ComboBox

jidefx.scene.control.popup PopupContent used by the PopupField or the
FormattedComboBox

Dependency

The JideFX Fields product depends on the JideFX Common, JideFX Converters and the
JideFX Decoration.

MaskTextField

One of the missing components in JavaFX is a JFormattedTextField equivalent as in Swing.
The purpose of such a text field is to restrict user input so that only some characters can be
entered. That’s why the “mask” was invented. Basically, a mask was used to specify the valid
characters that can be entered for a particular position in the input string. For example, in
Swing’s MaskFormatter, ‘#’ is a mask character for digits, so a mask “##” means the input string
must be two digits such as “01”, “23”. All other non-digits characters will not be accepted.

Masks could be very useful. For example, an SSN is a 9 digit string with dashes in between; a
serial number could be 25 digits or letters, all in uppercase with a dash every five letters; a MAC
address is a 12 hexadecimal digits with a semi-colon every two digits. Those aforementioned
strings can be easily handled by a mask text field, such as Swing’s JFormattedTextField. We call it

COPYRIGHT © 2002-2013 J IDE SOFTWARE. ALL RIGHTS RESERVED

3

position-based formatting because each character input can be enforced based on its position in
the String. Usually, the final string has a fixed length.

That’s we created MaskTextField which leverages the mask concept. To make it easy to
understand, unlike MaskFormatter which only has one mask, we have several masks for
different purposes.

InputMask

MaskTextField uses setInputMask(String mask) to set the mask to restrict user input. This is
the main mask and required. The pre-defined mask characters are:

Mask Predefined as fields Description

A INPUT_MASK_LETTER ASCII alphabetic character required. A-Z, a-z.

N INPUT_MASK_DIGIT_OR_LETTER ASCII alphanumeric character required. A-Z, a-z,
0-9.

X INPUT_MASK_ANY_NON_SPACE Any character required except spaces.

H INPUT_MASK_HAX Hexadecimal character required. A-F, a-f, 0-9.

D INPUT_MASK_DIGIT_NON_ZERO ASCII digit required. 1-9.

9 INPUT_MASK_DIGIT ASCII digit required. 0-9.

8 INPUT_MASK_DIGIT_0_TO_8 ASCII digit required. 0-8.

7, 6, 5, 4, 3, … and so on which means only allows from 0 to that number

2 INPUT_MASK_DIGIT_0_TO_2 ASCII digit required. 0-2.

1 INPUT_MASK_DIGIT_0_TO_1 ASCII digit required. 0-1, for example, a binary
number

0 INPUT_MASK_DIGIT_ZERO 0 required

If the setInitialText is not called, the InputMask will be used to create the initial text for the
field. We created it by replacing all mask characters with spaces or the specified placeholder
characters, and left the non-mask characters where they are. The placeholder character can be
set using setPlaceholderCharacter(char) method. See below. In both cases, the InputMask is
999-99-9999.

By default, the placeholderCharacter is whitespace. The initial text is

COPYRIGHT © 2002-2013 J IDE SOFTWARE. ALL RIGHTS RESERVED

4

If the placeholderCharacter is underscore ‘_’, then the initial text will become

To make the grammar easy to understand, we strictly enforced that there is only one
mask character per position for the InputMask. Each character in the InputMask corresponds
to a character in the input string.

ConversionMask

In addition to the Input Mask, we also have a separate ConversionMask which will
automatically convert the entered character to another character. This mask is optional. It can
be set using setConversionMask(String mask). If not set, there will be no conversion. If you ever
set the mask, please make sure they have the exact same length as the InputMask, and have a
valid conversion mask character at the exact position where there is an InputMask character.

Mask Predefined as Field Description

U CONVERSION_MASK_UPPER_CASE Uppercase required. If user enters a
lowercase letter, it will be
automatically converted to the
corresponding uppercase letter.

L CONVERSION_MASK_LOWER_CASE Lowercase required. If user enters an
uppercase letter, it will be
automatically converted to the
corresponding lowercase letter.

Any other
undefined
chars

CONVERSION_MASK_IGNORE No conversion

RequiredMask

The RequiredMask is to indicate whether the character on a particular position is required.
It is again optional. It can be set using setRequiredMask(String mask). If not set, a valid non-
space character is required on all the positions. If you ever set the mask, please make sure they
have the same length as the InputMask, and have a valid required mask character at the exact
position where there is an InputMask character.

Mask Predefined as Field Description

R REQUIRED_MASK_REQUIRED Required. Users must enter a valid
character that matches with the mask on
this position.

COPYRIGHT © 2002-2013 J IDE SOFTWARE. ALL RIGHTS RESERVED

5

Any other
undefined
chars

REQUIRED_MASK_NOT_REQUIRED Not required. User can enter a space at
this position.

Examples

SSN InputMask: 999-99-9999

Serial Number
(Used by most Microsoft
products)

InputMask: NNNNN-NNNNN-NNNNN-NNNNN-NNNNN

ConversionMask: UUUUU_UUUUU_UUUUU_UUUUU_UUUUU

MAC Address InputMask: HH:HH:HH:HH:HH:HH

ConversionMask: UU_UU_UU_UU_UU_UU

Customization

The MaskTextField’s behavior is fully customizable.

Change the Mask Character

If you don’t like the mask character we chose or it conflicts with your input string, you can
change it by change the inputMaskVerifiers map directly (or the conversions map for conversion
mask characters). For example, to change INPUT_MASK_LETTER from ‘A’ to ‘B’, all you need to
do is:

MaskTextField field = new MaskTextField();

ObservableMap<Character, Callback<Character, Boolean>> verifiers =

field.getInputMaskVerifiers();

// inherit the behavior from the old one

verifiers.put('B', verifiers.get(INPUT_MASK_LETTER));

// remove the old one Or if you want to automatically convert the entered character

// to another one, you can use the conversions map

verifiers.remove(INPUT_MASK_LETTER); .

Or to add a conversion mask character:

field.getConversions().put('+', new Callback<Character, Character>() {

 public Character call(Character param) {

 return (char) (param.charValue() + 1);

 }

});

The code above will add a mask character ‘+’. It will automatically increases the ASCII of the
input char by 1 if the corresponding conversion mask is ‘+’.

A quick note, it is confusing that some mask characters are pre-defined and others are
user-defined. We intentionally used only upper case letters or digits as all the pre-defined

COPYRIGHT © 2002-2013 J IDE SOFTWARE. ALL RIGHTS RESERVED

6

masks. So we recommend you only use lower case letters as the user-defined masks. It is not
required but highly recommended.

Figure 1 Some MaskTextFields

Figure 2 Non-editable MaskTextFields (with comboBoxLike flag set to true)

FormattedTextField

MaskTextField is great for its designed purpose. However there are another category of
restricted input that cannot be enforced using the position-based mask as the MaskTextField
does. We called it the group-based mask because the input characters can be divided into
groups, and then the input can be enforced on each group, not on each character as in the
MaskTextField.

For example, an IPv4 address is a four-group string in the format of “#.#.#.#.” Each # is a
group that could be a number from 0 to 255, separated by dots. Because each group could be 1
to 3 digits, there is no way to represent it as a position-based mask using the MaskTextField. On
the other hand, an IP address could be represented as a regular expression as below.

"\\b(([01]?\\d?\\d|2[0-4]\\d|25[0-5])\\.){3}([01]?\\d?\\d|2[0-4]\\d|25[0-5])\\b"

COPYRIGHT © 2002-2013 J IDE SOFTWARE. ALL RIGHTS RESERVED

7

However, the regular expression is only useful when doing the final validation, cannot be
used to restrict and guide user inputs. Swing’s JFormattedTextField can’t handle it very well. As a
matter for fact, we had to create a customized component called IPTextField for Swing and used
four JTextFields internally. We were never satisfied with it because it is so limited (i.e. Ctrl-A
can’t select all the text as they are in four different text fields).

We wanted to do something better for the JavaFX. Here comes the FormattedTextField –
the most advanced text field that can restrict user inputs in the history of Java UI. I am not
exaggerating.

Group-based Mask, a.k.a. Pattern

The group-based mask uses a String pattern to define the groups. The pattern could be in
any format you want. The next thing is to define PatternVerifiers map to verify/restrict the input
for each group. It is basically a callback to verify the text in each group.

It is easier to understand if we look at an example.

FormattedTextField<String> field = new FormattedTextField<>();

field.setPattern("n");

field.getPatternVerifiers().put("n", new IntegerRangePatternVerifier(0, 255));

The code above will create a text field will only accept a number from 0 to 255.

Next up is an example for an IPv4 address field.

FormattedTextField<String> field = new FormattedTextField<>();

field.getPatternVerifiers().put("h", new IntegerRangePatternVerifier(0, 255));

field.setPattern("h.h.h.h");

To initialize a FormattedTextField, you must set both pattern and the pattern verifiers
together. The pattern is "h.h.h.h". As there is a verifier for “h”, so we know the pattern means
that there are four groups, all named "h", separated by dots. In the PatternVerifiers map, we
added a verifier which will make sure the input string for the group "h" is a number between 0
and 255. If there is no group definition for any text in the pattern, it is considered as fixed
characters, such as "." in the above example, and will stay there all the time.

By the way, we will cover IntegerRangePatternVerifier etc. built-in verifiers and how to write
custom verifiers later. For now, just remember this range verifier will enforce the text in the
group is an integer between 0 and 255.

See below for a series of screenshots of the IP FormattedTextField in action.

Initial value: all fixed characters will be displayed initially with no spaces in between. Note
that the validation icons are not there by default on the FormattedTextField but you can easily
add valiation icons to the FormattedTextField using the Validation feature we provided.

User enters ‘2’ at the first position. Internally the verifier is called. Since ‘2’ is between 0 and
255, it is accepted.

COPYRIGHT © 2002-2013 J IDE SOFTWARE. ALL RIGHTS RESERVED

8

User enters ‘5’ next. The new group text “25” is still beween 0 and 255 so ‘5’ is accepted.

User enters ‘6’ right after ‘5’. Without the restriction from the FormattedTextField, the
resulting text would be “256”. However, “256” is not a valid segment for an IP address so the
FormattedTextField ignores the input at this position, automatically moves the caret to the next
position. It will skip ‘.’ as it is a fixed char, and try to enter ‘6’ into the next group. The next group
only has “6” and it is valid.

Now user types a ‘.’. Since the ‘.’ matches with the next non-mask char, so the caret
automatically advanced to the next group. As a matter of fact, for an IP address field, user can
type ‘.’ at any position and the caret will move to the next group.

Finally user enters ‘9’, ‘0’, ‘1’, ‘2’, ‘1’. The IP address is completed.

The validation icon nows show the IP address is valid. The validation code uses a regular
expression to valid the IP address.

Let’s look at another example of a FormattedTextField for a date in the US standard format
of Month/Day/Year. It is more complex than the IP address one.

/* EXAMPLE ONLY. DO NOT USE THIS CODE IN YOUR REAL APPLICATION */

FormattedTextField<String> field = new FormattedTextField<>();

field.getPatternVerifiers().put("MM", new IntegerRangePatternVerifier(1, 12,

true));

field.getPatternVerifiers().put("dd", new IntegerRangePatternVerifier(1, 31,

true));

field.getPatternVerifiers().put("yyyy", new IntegerRangePatternVerifier(0, 9999,

true));

field.setPattern("MM/dd/yyyy");

In this example, there are three groups that we defined, named "MM", "dd", "yyyy"
respectively. The group "MM" is the month between 1 and 12. The group "dd" is the day in
month so it must be between 1 and 31 (always 31? questionable). The group "yyyy" is the year
which is from 0 to 9999.

Well, if you were us, you shouldn’t be satisfied with it because the restriction to the day in
month group is far from enough. Some months only have 30 days or even 28 or 29 days for
February. We can’t just allow 31 for all the months. So how about this code below? You don’t
have to read the code. Just believe that all it does is to look at the month and year value (in
underlined bold text below) and determine the maximum allowed days for that month.

COPYRIGHT © 2002-2013 J IDE SOFTWARE. ALL RIGHTS RESERVED

9

/* EXAMPLE ONLY. DO NOT USE THIS CODE IN YOUR REAL APPLICATION */

field.getPatternVerifiers().put("dd", new Callback<String, Boolean>() {

 @Override

 public Boolean call(String text) {

 int m = 0;

 int d = 0;

 int y = 0;

 try {

 d = Integer.parseInt(text);

 }

 catch (NumberFormatException e) {

 // ignore

 }

 try {

 String month = field.getGroupText("MM");

 m = Integer.parseInt(month);

 }

 catch (NumberFormatException e) {

 // ignore

 }

 if (m == 1 || m == 3 || m == 5 || m == 7 || m == 8 || m == 10 || m == 12)

return d >= 1 && d <= 31;

 else if (m == 4 || m == 6 || m == 9 || m == 11) return d >= 1 && d <= 30;

 else if (m == 2) {

 try {

 String year = field.getGroupText("yyyy");

 y = Integer.parseInt(year);

 }

 catch (NumberFormatException e) {

 // ignore

 }

 if (y % 400 == 0) return d >= 1 && d <= 29;

 else if (y % 100 == 0) return d >= 1 && d <= 28;

 else if (y % 4 == 0) return d >= 1 && d <= 29;

 else return d >= 1 && d <= 28;

 }

 else return d >= 1 && d <= 31;

 }

});

Hope now you can see the potential of the FormattedTextField. The code is obviously too
complex. The good news is, the code above is not the actual code that we are using to create a
FormattedTextField for Date. Below is the actual code.

DateField field = new DateField("MM/dd/yyyy");

The code could be so simple because we provided full support for the DateFormat. We will
cover it later in details.

Support for any Data Types

FormattedTextField can be used to edit any data types with the help of the StringConverter
or JideFX’s ObjectConverter. See below for an example.

FormattedTextField<Color> colorField = new FormattedTextField<>();

colorField.setPattern("red, green, blue");

colorField.getPatternVerifiers().put("red", new IntegerRangePatternVerifier(0,

255));

colorField.getPatternVerifiers().put("green", new IntegerRangePatternVerifier(0,

255));

colorField.getPatternVerifiers().put("blue", new

IntegerRangePatternVerifier(0,255));

COPYRIGHT © 2002-2013 J IDE SOFTWARE. ALL RIGHTS RESERVED

10

// this converter will take care of the String <-> Color conversion

colorField.setStringConverter(new RgbColorConverter(false).toStringConverter());

// now you can set the value instead of using setText(String)

colorField.setValue(Color.WHITE);

See below for a screenshot of the FormattedTextField for Color.

As you can see from the example code above, FormattedTextField takes a generic type as
the class paramater which would be the data type to be edited. In this case, you should call
setStringConverter to setup a conversion beween the String and the data type. Once you did
that, never call setText or getText again. TextField’s setText method is final. Otherwise we would
have overridden it to throw an exception and warn you not to use it. You should always call
setValue (instead of setText which doesn’t know anything about the format) or getValue
(instead of getText and converts the text later).

We constantly test if the text user enterred is a valid value. This is done by the commitEdit
method, which can be called programatically, or when user presses ENTER key. The reason we
do that is because user could type something that is valid based on the PatternVerifier but not
valid as the whole data. For example, in a date field, user typed

Note the year is not entered yet so the pattern verifiers can’t disallow user from entering
"Feb 29" because “Feb 29” could be valid if user continued to enter “2000” after that. However,
user enters "2001", which is not a leap year.

Now user presses ENTER.

As you can see the text is automatically changed to "Mar 1, 2001". That’s because the
DateFormat parses "Feb 29, 2001", realized it is invalid so it converts automatically to "March 1,
2001"1.

1 For DateFormat, it will only do this kind of conversion when setLenient is set to true. It is true by default.

If it was set to false, “02/29/2001” will be treated as an invalid date string and the FormattedTextField will

revert the text to last known valid value.

COPYRIGHT © 2002-2013 J IDE SOFTWARE. ALL RIGHTS RESERVED

11

On the other hand, if the text is "Feb |,2001" where the red bar is the caret position, user
cannot enter "29" because we know in the February of 2001, there are only 28 days. As you can
see, that’s how FormattedTextField enforces the user input without losing any flexibility.

At any time, ESCAPE key will cancel the edit and revert the value to the last known valid
value. The ENTER key will trigger a call to the commitEdit method, which parses the text. If
succeed, it will set the value. Otherwise, it will call the cancelEdit method and revert to last
known valid value.

Mouse and Keyboard Support

Spinner Support

By using the decoration feature in the JideFX Decoration product, FormattedTextField can
show two spinner buttons on the right end of the field. The spinners are not useful when the
pattern verifiers for the group implements the Adjustable interface. If so, the spinner buttons
will increase or decrease the value in the current group (where the caret is located). If the field
is not focused thus no caret, the first group will be adjusted.

Figure 3 Spinners

Spinner buttons support auto-repeat. It will keep increasing or decreasing the values as long
as the mouse is pressed. By default, it will delay 500 milliseconds then repeat the action every
100 milliseconds.

Keyboard Support

FormattedTextField provides very extensive support for the keyboard. The UP/DOWN will
increase/decrease the value by 1 unit, PAGE-UP/PAGE-DOWN by 10 units. By default, the value
will restart from the beginning if reaching the end and vice versa. However, if the SHIFT key is
hold at the same time, the value will not restart. While we kept HOME/END keys untouched
because user usually uses them to go to the beginning and end in the text field, we override
CTRL+HOME/CTRL+END to change the value to the minimum or the maximum allowed values
for that group. The TAB key also works for the FormattedTextField. Instead of go to the next
node, it will go to the next group and select the text in that group within the same
FormattedTextField. The SHIFT+TAB will go to the previous group. The CTRL+TAB will go to the
next focusable node outside the field, or pressing TAB at the last group in the field will do the
same thing.

See below for an overview of the keyboard support.

Keyboard Shortcuts Description

UP/DOWN Increase/decrease the value by 1 unit in the current group,
restart if reaching the end or the beginning

SHIFT+UP/ SHIFT+DOWN Increase/decrease the value by 1 unit in the current group, do

COPYRIGHT © 2002-2013 J IDE SOFTWARE. ALL RIGHTS RESERVED

12

not restart

PAGE-UP/PAGE-DOWN Increase/decrease the value by 10 unit in the current group,
restart if reaching the end or the beginning

SHIFT+PAGE-UP/
SHIFT+PAGE-DOWN

Increase/decrease the value by 10 unit in the current group, do
not restart

TAB Goes to the next group and select the text. If no next group, go
to the next focusable control outside the field

SHIFT+TAB Goes to the previous group and select the text. If no previous
group, go to the previous focusable control outside the field

CTRL+TAB Goes to the next focusable control outside the field

CTRL+SHIFT+TAB Goes to the previous focusable control outside the field

Mouse Support

Sometimes it is faster to use mouse than keyboard to increase/decrease the value.
Keyboard could be clumsy. We support the mouse in two ways.

Mouse Wheel Support

At any time, you can use your mouse wheel to scroll the value. It knows which group the
mouse is on and will adjust the value for that group only. If you hold the SHIFT key while
scrolling the mouse wheel, each scroll event will adjust the value by 10 units at a time.

Figure 4 Mouse Wheel Scrolling

Adjustment Label Support

The second way to adjust value using mouse is when the field has a corresponding label. We
added installAdjustmentMouseHandler methods to FormattedTextField.

Let’s say you have a FormattedTextField and a Label before it. You simply call

field.installAdjustmentMouseHandler(label);

The first thing you will notice is now the label has a horizontal resize cursor. See below. It
measn you can now drag.

Figure 5 Adjustment Label

COPYRIGHT © 2002-2013 J IDE SOFTWARE. ALL RIGHTS RESERVED

13

 While you drag to the right, the value goes up. To the left, the value goes down. It is same
as the spinner buttons except now it is much easier to adjust the value than clicking on the
buttons.

Figure 6 Drag the Adjustment Label

There are three such methods you can choose from which provide a couple of minor
customizations.

public void installAdjustmentMouseHandler(final Node node)

public void installAdjustmentMouseHandler(final Node node, final int units)

public void installAdjustmentMouseHandler(final Node node, final int units, final

double threshold)

As you can see from the methods above, you can use any node as the adjustment node for
the field because we use Node as the type of the first parameter. However, please make sure
that the node doesn’t have a mouse handler registered. Otherwise it might be conflicting with
our mouse handler.

Pressing on the adjustment node will make the field getting focus and select the current
group. Dragging the node will adjust the value. Also when the SHIFT key is pressed during
dragging, we will adjust the value by 10 units for each mouse dragged event (the same as units x
10). If the ALT key is pressed during dragging, it will take a 10 times longer dragging distance in
order to trigger the value adjustment (the same as threshold x 10). Furthermore, if the field has
multiple groups, A double-click will select the next group, A shift-double-click will select the
previous group.

Because the singleton nature of this feature, we only support one adjustment node per
field. Installing the mouse handler for another node will remove the previous mouse handler.

Because JavaFX automatically translates TouchEvent to MouseEvent so if you have a touch
screen, touching the adjustment and dragging works too.

The table below shows a summary of the mouse support.

Mouse Description

On the FormattedTextField

Wheel Up/Down Increase/decrease the value by 1 unit in the current group, do
not restart

SHIFT + Wheel Up/Down Increase/decrease the value by 10 unit in the current group, do
not restart

On the Adjustment Label

COPYRIGHT © 2002-2013 J IDE SOFTWARE. ALL RIGHTS RESERVED

14

Mouse Drag Right/Left,
Touch and Drag

Increase/decrease the value by 1 unit for each drag event in the
current group, do not restart

SHIFT+Mouse Drag
Right/Left

Increase/decrease the value by 10 unit for each drag event in
the current group, do not restart

ALT+Mouse Drag Right/Left Takes 10 times longer distance to trigger one drag event. Can
be used to fine tune the value

Double Click, Double Tap Goes to the next group and select the text. If no next group, go
to the first group

SHIFT + Double Click Goes to the previous group and select the text. If no previous
group, go to the last group

PatternVerifiers

So far, we covered very little about the verifiers except for IntegerRangePatternVerifier
which we used several times in the example code above. We actually have a very powerful
pattern verifying mechanism. Everything before this section is probably easy and
straightforward. This section is where the things get tricky.

PatternVerifier is a Callback<String, Boolean>. It takes a text in the group after user entered
something and returns true or false to indicate the text is valid or invalid for the group. If invalid,
the FormattedTextField will prevent the last character from being entered. Depending how you
plan to verify the text, there are a bunch of interfaces that can be implemented. Here are those
interfaces and their methods. Any pattern verifiers can choose to implement all or some or none
of those interfaces.

/**

 * An interface that can be implemented by the pattern verifier if

 * the verifier knows how to parse the text and return the value for that group.

 *

 * @param <T>

 */

public static interface Parser<T> {

 T parse(String text);

}

/**

 * An interface that can be implemented by the pattern verifier if the verifier

 * knows how to format the value for that group.

 *

 * @param <T>

 */

public static interface Formatter<T> {

 String format(T value);

}

/**

COPYRIGHT © 2002-2013 J IDE SOFTWARE. ALL RIGHTS RESERVED

15

 * An interface that can be implemented by the pattern verifier to limit the

 * value of the text to be in the range. The value doesn't have to be a number.

 * It could be Strings in order where the first String is min and the last

 * String is max.

 */

public static interface Range<T> {

 T getMin();

 T getMax();

}

/**

 * An interface that can be implemented by the pattern verifier to limit the length

 * of the text within the minLength and the maxLength.

 */

public static interface Length {

 int getMinLength();

 int getMaxLength();

}

/**

 * An interface that can be implemented by the pattern verifier to support enum

types

 * or an array of values. Typically the text in that group must be the getValues

 * array.

 */

public static interface Enums<T> {

 T[] getValues();

}

/**

 * An interface that can be implemented by the pattern verifier to support the

increase

 * or decrease of the values by steps. Those methods (as the method order below)

will be

 * called when the up, down, page-up, page-down, ctrl+home and ctrl+end keys are

pressed,

 * respectively.

 *

 * @param <T>

 */

public static interface Adjustable<T> {

 T getPreviousValue(T current, boolean restart);

 T getNextValue(T current, boolean restart);

 T getPreviousPage(T current, boolean restart);

 T getNextPage(T current, boolean restart);

 T getHome(T current);

 T getEnd(T current);

}

/**

 * An interface that can be implemented by the pattern verifier to hold the value

of

 * the whole field. The verifier can implement this method if the validation

process

 * needs the value.

COPYRIGHT © 2002-2013 J IDE SOFTWARE. ALL RIGHTS RESERVED

16

 *

 * @param <T> the data type of the FormattedTextField

 * @param <TV> the data type of the target value. The target value could be the

same as

 * the FormattedTextField, could be the same as the value of the group

text,

 * or the value of the several groups that are related.

 */

public static interface Value<T, TV> {

 void setFieldValue(T fieldValue);

 T getFieldValue();

 TV toTargetValue(T fieldValue);

 T fromTargetValue(T previousFieldValue, TV targetValue);

}

The last Value interface may be confusing. To help you understand, let’s introduce three
terms which are all called “value”. We will use those terms when talking about the pattern
verifiers.

Field value: The value of the FormattedTextField. The setValue and getValue of
FormattedTextField is to set and get the field value. Not all verifiers need to know the field
value. For example, for IP address, the verifier for a group doesn’t need to know the field value
which is the whole IP address. For the date, you will need to know the field value in order to
verify a group. In the latter case, you need to make sure your verifier implements the Value
interface.

Target value: The target value is the value that an Adjustable interface will adjust if it is
available. Or the Adjustable will adjust the group value. Not all verifiers need to know the target
value.

Group value: it is the value for the group that the verifier works on. If a verifier doesn’t
implement Value interface, the group value will be one being adjusted by the Adjustable
interface.

Now let’s look at few examples of those three values.

Examples (the current
group in red)

Field Value Target Value Group Value

IP: 233.23.123.12

Pattern: h:h:h:h

Not used Not used 123 (adjusted)

Floating Number: 23.5

Pattern: n.f

23.5 23.5 (adjusted) 5

Floating Number: 23.5
Pattern: f

Not used Not used 23.5 (adjusted)

Point2D: 13, 23 Point2D (13, 23) 23 (adjusted) 23

COPYRIGHT © 2002-2013 J IDE SOFTWARE. ALL RIGHTS RESERVED

17

Pattern: x, y

Font: Tahoma, Bold, 23.4

Pattern: family, style, n.f

Font (Tahoma,
Bold, 23.4)

23.4 (adjusted) 23

Date: 12/31/2013

Pattern: MM/dd/yyyy

12/31/2013
(adjusted)

31 31

If a verifier wants to use the field value or the target value, the Value interface must be
implemented. The Value interface has methods to set/get the field value and to convert
between the target value and the field value. The methods on the Adjustable interface can
decide if they want to adjust the field value or the target value. For example, for the Font
example, the target value (the font size) is adjusted. For the Date, the whole date is adjusted
because the fields in the date are related. Increasing 31 in the 12/31/2013 by 1 should change
the date to 01/01/2014. That’s the main reason the Adjustable adjusts the whole date, not just
the value for the group.

We also have many built-in verifiers that should cover a majority of the use cases. They are

RangePatternVerifier: abstract class. It can be extended by any verifiers that has a range.
Interfaces implemented by this class are Range, Length, Adjustable, Parser and Formatter.

IntegerRangePatternVerifier: extends RangePatternVerifier. It makes sure the text can be
parsed as integer and it is in the specified range and length.

NumberRangePatternVerifier: extends RangePatternVerifier. It makes sure the text can be
parsed as Number and it is in the specified range and length. It also supports
adjustmentMultiplier so that instead of increasing by 1 or 10 (for page), it could also be 0.01,
1000 etc. by multiplying the adjustmentMultiplier.

NumberValuePatternVerifier: extends NumberRangePatternVerifier, implements the Value
interface. It also supports a valueMultiplier which will be used to multiply the target value
before the value is adjusted. The two multipliers (value and adjustment) are used mainly for the
DecimalFormat, such as the percentage format where there is a multiple of 100.

The main difference of this class and the NumberRangePatternVerifier is this class adjusts on
the field value instead of the group value as NumberRangePatternVerifier does. For example, if
we have a value of 21.9 with “n.f” as the pattern. If you use NumberRangePatternVerifier, adjust
the “f” group by 1 will make the whole value 21.0. If using NumberValuePatternVerifier for the
“f” group, increasing by 1 will make the whole value 22.0.

It is an abstract class. The only two methods yet to be implemented are toTargetValue and
fromTargetValue which provide way to convert between the target value and the field value.

IntegerDigitsPatternVerifier: can be used for any number. It will take care of the verification
of the integer digits.

FractionDigitsPatternVerifier: same as the previous one except the number is the faction
portion of a number.

COPYRIGHT © 2002-2013 J IDE SOFTWARE. ALL RIGHTS RESERVED

18

ValuesPatternVerifier: takes an array of values. It will make sure the input text is in the
array.

StringValuesPatternVerifier: extends ValuesPatternVerifier. The array is a String array.

Number Support

DecimalFormat can handle the formatting and parsing of any floating numbers, integers,
percentages and currencies. NumberField, which extends FormattedTextField can use
DecimalFormat to format any numbers.

NumberField amountField = new NumberField<>();

DecimalFormat currencyFormat = (DecimalFormat) NumberFormat.getCurrencyInstance();

currencyFormat.setMaximumIntegerDigits(4);

currencyFormat.setMaximumFractionDigits(2);

currencyFormat.setGroupingUsed(false);

currencyFormat.setMinimumFractionDigits(2);

amountField. setDecimalFormat(currencyFormat);

Internally, we will set a pattern based on the DecimalFormat and set corresponding
PatternVerifiers for it. See below for a few NumberField examples.

Figure 7 Number Support

One of the useful flags for number with grouping is setAutoReformat(true). When you type
the digits, the FormattedTextField will automatically add “,” between groups.

Figure 8 Number Group and AutoReformat

Date and Time

One of the most important usages of the FormattedTextField is to support the all the date
related data types, such as java.utils.Date, java.utils.Calendar and java.time.LocalDate,
java.time.LocalDateTime, java.time.LocalTime in the JDK8.

DateFormat Support

In pre-JDK8, the DateFormat is used to format and parse a Date object. However, it doesn’t
provide a way to guide user input. DateField and CalendarField, which extend
FormattedTextField, are created to support the DateFormat. They used the same string pattern
used by DateFormat, but added the features to guide and restrict user input to make it easy for
users to input a valid Date or Calendar string. Both fields are pretty much the same except
DateField uses java.utils.Date and CalendarField uses java.utils.Calendar as the data type.

COPYRIGHT © 2002-2013 J IDE SOFTWARE. ALL RIGHTS RESERVED

19

The following DateFormat patterns are supported by DateField and CalendarField. When
you call field.setDateFormat(SimpleDateFormat), we will automatically register all the necessary
pattern verifiers for the groups below. Do not call setStringConverter for DateField and
CalendarField as the DateFormat will do the conversion.

Group Name Description Samples

GGG, GG, G Era designator AD, BC

yyyyy
yyyy
yy
y

Year 00312, 02010
0312, 2010
88, 10
312, 2010

MMMMM, MMMM
MMM
MM
M

Month in year July
Jul
07, 12
7, 12

ww
w

Week in year 08, 51
8, 51

W Week in month 4

DDD
D

Day in year 127, 098, 003
127, 98, 3

dd
d

Day in month 04, 21
4, 21

F Day of week in month 4

EEEE
EEE, EE, E

Day in week Tuesday
Tue

aaa, aa, aa Am/pm marker AM or PM

HH
H

Hours in day (0-23) 09, 12, 23
9, 12, 23

kk
k

Hours in day (1-24) 09, 13, 24
9, 13, 24

KK
K

Hours in am/pm (0-11) 02, 11
2, 11

COPYRIGHT © 2002-2013 J IDE SOFTWARE. ALL RIGHTS RESERVED

20

hh
h

Hours in am/pm (1-12) 02, 12
2, 12

mm
m

Minutes in hours (0-59) 01, 49
1, 49

ss
s

Seconds in minute (0-59) 01, 49
1, 49

SSS
S

Milliseconds (0-999) 002, 013, 898
2, 13, 898

zzz, zz, z Time zone PDT, PST

Please note, although the support for the DateFormat is quite comprehensive, it is not 100%
compete because of the following limitations.

1. Groups are better not to be adjacent. In the DateFormat, "hhmmss" is a valid pattern
but doesn’t work well for the FormattedTextField. That’s because the FormattedTextFiel
doesn’t know how to separate the groups. The whole “hhmmss” could be just one group
name. You have to separate the groups with a non-group char, such as "hh:mm:ss". If
you have to use adjacent groups, the only workaround is to make sure the
corresponding group verifier has a fixed length so that the FormattedTextField will use
the fixed length to separate the groups.

See below for a few examples using the DateFormat.

Figure 9 DateFormat Support

DateTimeFormatter Support

Since JDK8, a new data/time API was introduced (http://jcp.org/en/jsr/detail?id=310). There
is a new formatter called DateTimeFormatter. FormattedTextField supports it as well. The
pattern is almost the same as the DateFormat but is richer.

The following pattern letters are defined as in DateTimeFormatter. The browns rows are the
pattern letters we currently don’t support because the DateTimeFormatter doesn’t support.
Some of them are marked as not adjustable. It means you can’t adjust its value using keyboard
or mouse.

Symbol Meaning Presentation Examples

http://jcp.org/en/jsr/detail?id=310

COPYRIGHT © 2002-2013 J IDE SOFTWARE. ALL RIGHTS RESERVED

21

G era text AD; Anno Domini; A

u year year 2004; 04

y year-of-era
(treated the same as ‘u’)

year 2004; 04

D day-of-year number 189

M/L month-of-year number/text 7; 07; Jul; July; J

d day-of-month number 10

Q/q quarter-of-year
(unit is MONTHS for now as
ChronoUnit.QARTERS is not
defined for some reason)

number/text 3; 03; Q3; 3rd quarter

Y week-based-year
(treated the same as ‘u’)

year 1996; 96

w week-of-week-based-year
(not adjustable)

number 27

W week-of-month
(not adjustable)

number 4

E day-of-week text Tue; Tuesday; T

e/c localized day-of-week
(treated as day-of-week)

number/text 2; 02; Tue; Tuesday; T

F week-of-month
(not adjustable)

number 3

a am-pm-of-day text PM

h clock-hour-of-am-pm (1-12) number 12

K hour-of-am-pm (0-11) number 0

k clock-hour-of-am-pm (1-24) number 0

H hour-of-day (0-23) number 0

m minute-of-hour number 30

COPYRIGHT © 2002-2013 J IDE SOFTWARE. ALL RIGHTS RESERVED

22

s second-of-minute number 55

S fraction-of-second
(not adjustable)

fraction 978

A milli-of-day number 1234

n nano-of-second number 987654321

N nano-of-day number 1234000000

V time-zone ID zone-id America/Los_Angeles; Z; -08:30

z time-zone name zone-name Pacific Standard Time; PST

O localized zone-offset offset-O GMT+8; GMT+08:00; UTC-08:00;

X zone-offset 'Z' for zero offset-X Z; -08; -0830; -08:30; -083015; -
08:30:15;

x zone-offset offset-x +0000; -08; -0830; -08:30; -083015; -
08:30:15;

Z zone-offset offset-Z +0000; -0800; -08:00;

For each group, you can use one or more pattern letters as in the Symbol columns above.

For the values in the Presentation column:

Text: The text style is determined based on the number of pattern letters used. Less than 4
pattern letters will use the short form. Exactly 4 pattern letters will use the full form. Exactly 5
pattern letters will use the narrow form. Pattern letters 'L', 'c', and 'q' specify the stand-alone
form of the text styles.

Number: If the count of letters is one, then the value is output using the minimum number
of digits and without padding. Otherwise, the count of digits is used as the width of the output
field, with the value zero-padded as necessary. The following pattern letters have constraints on
the count of letters. Only one letter of 'c' and 'F' can be specified. Up to two letters of 'd', 'H', 'h',
'K', 'k', 'm', and 's' can be specified. Up to three letters of 'D' can be specified.

Number/Text: If the count of pattern letters is 3 or greater, use the Text rules above.
Otherwise use the Number rules above.

Fraction: Outputs the nano-of-second field as a fraction-of-second. The nano-of-second
value has nine digits, thus the count of pattern letters is from 1 to 9. If it is less than 9, then the
nano-of-second value is truncated, with only the most significant digits being output. When
parsing in strict mode, the number of parsed digits must match the count of pattern letters.

COPYRIGHT © 2002-2013 J IDE SOFTWARE. ALL RIGHTS RESERVED

23

When parsing in lenient mode, the number of parsed digits must be at least the count of pattern
letters, up to 9 digits.

Year: The count of letters determines the minimum field width below which padding is used.
If the count of letters is two, then a reduced two digit form is used. For printing, this outputs the
rightmost two digits. For parsing, this will parse using the base value of 2000, resulting in a year
within the range 2000 to 2099 inclusive. If the count of letters is less than four (but not two),
then the sign is only output for negative years as per SignStyle.NORMAL. Otherwise, the sign is
output if the pad width is exceeded, as per SignStyle.EXCEEDS_PAD.

At the moment, all zone pattern letters are not supported because the ChronoField doesn’t
define any fields for the time zone.

Additional Built-in PatternVerifiers for the various Date Types

We added more pattern verifiers in order to support the Date/Calendar and
LocalDate/LocalTime/LocalDateTime. We listed them below but you probably shouldn’t need to
know them unless you want to customize the fields.

For Date/Calendar

Date/CalendarFieldPatternVerifier: The base verifier for the verification related to
DateFormat.

IntegerDate/CalendarFieldPatternVerifier: to make sure the text can be parsed as integer
and the value of the integer is a valid value for the specified Calendar field. For example, year
field, day field, month field in the narrow format. Here are few examples.

// Year. 01996; 1996; 96

verifiers.put("yyyyy", new IntegerDateFieldPatternVerifier(Calendar.YEAR, 0, 99999,

true));

verifiers.put("yyyy", new IntegerDateFieldPatternVerifier(Calendar.YEAR, 0, 9999,

true));

verifiers.put("yy", new IntegerDateFieldPatternVerifier(Calendar.YEAR, 0, 99,

true));

verifiers.put("y", new IntegerDateFieldPatternVerifier(Calendar.YEAR, 0, 9999,

false));

// Day in year. 004; 4

verifiers.put("DDD", new IntegerDateFieldPatternVerifier(Calendar.DAY_OF_YEAR,

true));

verifiers.put("D", new IntegerDateFieldPatternVerifier(Calendar.DAY_OF_YEAR,

false));

StringDate/CalendarFieldPatternVerifier: to make sure the text is a valid string for the
specified Calendar field. For example, month field in the long or short format, am/pm field, day
of week field. Here are few examples.

// Month in year. July; Jul; 07; 7

String[] months = new DateFormatSymbols().getMonths();

verifiers.put("MMMM", new StringDateFieldPatternVerifier(Calendar.MONTH, months));

String[] shortMonths = new DateFormatSymbols().getShortMonths();

verifiers.put("MMM", new StringDateFieldPatternVerifier(Calendar.MONTH,

shortMonths));

// Day in week. Tuesday, Tue

String[] weekdays = new DateFormatSymbols().getWeekdays();

COPYRIGHT © 2002-2013 J IDE SOFTWARE. ALL RIGHTS RESERVED

24

verifiers.put("EEEE", new StringDateFieldPatternVerifier(Calendar.DAY_OF_WEEK,

weekdays));

String[] shortWeekdays = new DateFormatSymbols().getShortWeekdays();

StringDateFieldPatternVerifier dayInWeekVerifier = new

StringDateFieldPatternVerifier(Calendar.DAY_OF_WEEK, shortWeekdays);

verifiers.put("EEE", dayInWeekVerifier);

verifiers.put("EE", dayInWeekVerifier);

verifiers.put("E", dayInWeekVerifier);

// Am/pm marker. AM or PM

StringDateFieldPatternVerifier ampmVerifier = new

StringDateFieldPatternVerifier(Calendar.AM_PM, new

DateFormatSymbols().getAmPmStrings());

verifiers.put("aaa", ampmVerifier);

verifiers.put("aa", ampmVerifier);

verifiers.put("a", ampmVerifier);

For LocalDate/LocalDateTime/LocalTime

TemporalPatternVerifier: a verifier for Temporal such as LocalDate, LocalTime and
LocalDateTime.

IntegerTemporalPatternVerifier: A TemporalPatternVerifier for any fields that can be
represented as integer.

IntegerTemporalPatternVerifierNotAdjustable: Same as above except it doesn’t implement
the Adjustable interface, which means the value cannot be adjusted for this group

LongTemporalPatternVerifier: A TemporalPatternVerifier for any fields that can be
represented as long.

LongTemporalPatternVerifierNotAdjustable: Same as above except it doesn’t implement
the Adjustable interface, which means the value cannot be adjusted for this group

Comparison of the Two TextFields

Since we have both MaskTextField and FormattedTextField, we prepared a simple table to
compare the two fields to make it easy for you to make the choice.

 MaskTextField FormattedTextField

Length of input string Fixed length Various length

Verifier Verify the input per character Verify the input per group

Auto-conversion Auto convert happens when user
types a character. It only can
convert the entered character

Auto convert happens when
user enters the text and press
enter, or when use arrow key
to adjust value, or
isAutoReformat is true. It can
convert any portion of the
text in the field, not just the

COPYRIGHT © 2002-2013 J IDE SOFTWARE. ALL RIGHTS RESERVED

25

text of the current group

Editing data type Only String Any data type that supports
StringConverter

Arrow key support, tab
key support

No Yes

Spinner buttons No Yes

Support placeholder
characters

Yes No. No need because of the
various length

Valid or invalid
character set

Yes No. It is done on the pattern
verifier level. Such a set is not
very useful. The pattern
verifier can do a lot more
verification than just a set of
valid chars.

PopupField

The FormattedTextField control opened possibilities to create better combo-box-like
controls that are customized for different data types. On one hand, user can type the text to
make up a valid value using the FormattedTextField. On the other hand, user can choose a value
directly from the popup. PopupField is such a FormattedTextField with a popup button. Clicking
on the popup button will show a balloon popup to edit the value. The popup can be set using
setPopupContentFactory which is a factory that creates a PopupContent which is an interface
we defined.

COPYRIGHT © 2002-2013 J IDE SOFTWARE. ALL RIGHTS RESERVED

26

Figure 10 A DateField with Popup

Define a PopupField

If you would like to create a PopupField for a customized data type, you need to do the
following steps.

1. First of all, call setPopupContentFactory in the overridden initializeTextField method to
set a popup content factory for this data type. The popup could extend any other class
such as Pane, VBox, etc. but make sure it implements the PopupContent interface.

2. Customize the PopupField to use StringConverter to convert the data type to and from
String. Set the pattern and pattern verifiers if needed. Do these in the overriden
initializePattern() method.

3. Further customization. It all depends what you need for this customized data type. For
example, for the ColorField in JideFX, we added a color rectangle to the left of the field
to show the actual color of the current value. We also added a new ColorFormat flag so
that user can choose what color format they would like to use such as RGB, RGBA (‘a’
stands for alpha), HEX_RGB or HEX_RGBA. Or you can set the field to not-editable by
default. We suggest you do the customization in the overridden initializeTextField
method. It will automatically get called. If you would like to add an additional style class
to the field, call it in the overridden initializeStyle method. Both methods in addition to
registerListeners are three standard methods that we used pretty consistently in our
controls.

To make it easy to understand, we included the actual complete source code of the
ColorField.

/**

 * A <code>PopupField</code> for {@link Color}.

 */

public class ColorField extends PopupField<Color> {

 public enum ColorFormat {RGB, RGBA, HEX_RGB, HEX_RGBA}

COPYRIGHT © 2002-2013 J IDE SOFTWARE. ALL RIGHTS RESERVED

27

 private ObjectProperty<ColorFormat> _colorFormatProperty;

 private Decorator<Node> _colorRectDecorator;

 private BooleanProperty _colorRectVisibleProperty;

 public ColorField() {

 this(ColorFormat.RGB);

 }

 public ColorField(ColorFormat colorFormat) {

 setColorFormat(colorFormat);

 }

 private static final String DEFAULT_STYLE_CLASS = "color-field";

 @Override

 protected void initializeStyle() {

 super.initializeStyle();

 getStyleClass().addAll(DEFAULT_STYLE_CLASS);

 }

 public ObjectProperty<ColorFormat> colorFormatProperty() {

 if (_colorFormatProperty == null) {

 _colorFormatProperty = new SimpleObjectProperty<ColorFormat>(this,

"colorFormat") {

 @Override

 protected void invalidated() {

 super.invalidated();

 switch (get()) {

 case RGB:

 setStringConverter(new

RgbColorConverter().toStringConverter());

 getPatternVerifiers().put("r", new

IntegerRangePatternVerifier(0, 255));

 getPatternVerifiers().put("g", new

IntegerRangePatternVerifier(0, 255));

 getPatternVerifiers().put("b", new

IntegerRangePatternVerifier(0, 255));

 setPattern("r, g, b");

 break;

 case RGBA:

 setStringConverter(new

RgbColorConverter(true).toStringConverter());

 getPatternVerifiers().put("r", new

IntegerRangePatternVerifier(0, 255));

 getPatternVerifiers().put("g", new

IntegerRangePatternVerifier(0, 255));

 getPatternVerifiers().put("b", new

IntegerRangePatternVerifier(0, 255));

 getPatternVerifiers().put("a", new

IntegerRangePatternVerifier(0, 255));

 setPattern("r, g, b, a");

 break;

 case HEX_RGB:

 setStringConverter(new

HexColorConverter().toStringConverter());

 getPatternVerifiers().put("rr", new

HexRangePatternVerifier(0, 255, true));

 getPatternVerifiers().put("gg", new

HexRangePatternVerifier(0, 255, true));

 getPatternVerifiers().put("bb", new

HexRangePatternVerifier(0, 255, true));

 setPattern("#rrggbb");

 break;

 case HEX_RGBA:

 setStringConverter(new

HexColorConverter(true).toStringConverter());

COPYRIGHT © 2002-2013 J IDE SOFTWARE. ALL RIGHTS RESERVED

28

 getPatternVerifiers().put("aa", new

HexRangePatternVerifier(0, 255, true));

 getPatternVerifiers().put("rr", new

HexRangePatternVerifier(0, 255, true));

 getPatternVerifiers().put("gg", new

HexRangePatternVerifier(0, 255, true));

 getPatternVerifiers().put("bb", new

HexRangePatternVerifier(0, 255, true));

 setPattern("#aarrggbb");

 break;

 }

 }

 };

 }

 return _colorFormatProperty;

 }

 public ColorFormat getColorFormat() {

 return colorFormatProperty().get();

 }

 public void setColorFormat(ColorFormat format) {

 colorFormatProperty().set(format);

 }

 @Override

 protected void initializeTextField() {

 super.initializeTextField();

 showColorRect();

 setPopupContentFactory(new Callback<Color, PopupContent<Color>>() {

 @Override

 public PopupContent<Color> call(Color param) {

 ColorPopupContent content = new ColorPopupContent();

 content.setValue(getValue());

 return content;

 }

 });

 }

 public BooleanProperty colorRectVisibleProperty() {

 if (_colorRectVisibleProperty == null) {

 _colorRectVisibleProperty = new SimpleBooleanProperty(this,

"colorRectVisible") {

 @Override

 protected void invalidated() {

 super.invalidated();

 boolean visible = get();

 if (visible) {

 showColorRect();

 }

 else {

 hideColorRect();

 }

 }

 };

 }

 return _colorRectVisibleProperty;

 }

 /**

 * Checks if the popup button is visible. The popup button will show a popup to

choose a value for the field.

 *

 * @return true or false.

 */

 public boolean isColorRectVisible() {

COPYRIGHT © 2002-2013 J IDE SOFTWARE. ALL RIGHTS RESERVED

29

 return colorRectVisibleProperty().get();

 }

 /**

 * Shows or hides the popup button.

 *

 * @param colorRectVisible true or false.

 */

 public void setColorRectVisible(boolean colorRectVisible) {

 colorRectVisibleProperty().set(colorRectVisible);

 }

 private void showColorRect() {

 if (_colorRectDecorator == null) {

 Rectangle rectangle = new Rectangle(16, 12);

 rectangle.fillProperty().bind(valueProperty());

 rectangle.setStroke(Color.GRAY);

 rectangle.disableProperty().bind(disabledProperty());

 _colorRectDecorator = new DefaultDecorator<Node>(rectangle,

Pos.CENTER_LEFT, new Insets(0, 0, 0, 120), new Point2D(90, 0), true);

 }

 DecorationUtils.install(this, _colorRectDecorator);

 }

 private void hideColorRect() {

 if (_colorRectDecorator != null) {

 DecorationUtils.uninstall(this, _colorRectDecorator);

 }

 }

}

We created the following PopupFields in the JideFX.

Figure 11 Existing PopupFields in JideFX Fields

Here are some screenshots.

COPYRIGHT © 2002-2013 J IDE SOFTWARE. ALL RIGHTS RESERVED

30

Figure 12 PopupFields

Figure 13 non-editable PopupField (with comboBoxLike flag set to true)

Customize the Popup Button etc.

You probably noticed that for the date related field, we used a customize popup button
instead of the regular down arrow. You can do that by overriding the
createPopupButtonDecorator method. See below for what we used in the DateField.

protected Decorator<Button> createPopupButtonDecorator() {

COPYRIGHT © 2002-2013 J IDE SOFTWARE. ALL RIGHTS RESERVED

31

 return new PredefinedDecorators.AbstractButtonDecoratorFactory() {

 @Override

 public Decorator<Button> create() {

 Shape calendarIcon =

PredefinedShapes.getInstance().createCalendarIcon(15);

 Shape shape =

PredefinedShapes.getInstance().createArrowedIcon(calendarIcon, Pos.BOTTOM_RIGHT,

0.4);

 return new DefaultDecorator<>(createButton(shape), Pos.CENTER_RIGHT,

new Insets(0, 100, 0, 0), new Point2D(-70, 0), true);

 }

 }.create();

}

The spinner buttons can be customzied too by overriding the following two methods. You
can put the buttons on either side of the field, or on the outside of top and bottom of the field.
For computer, the buttons maybe too far apart but for a touch user interface, it will be great.

/**

 * Creates the decorator for the increase button. Subclass can override it to

create a

 * different decorator.

 *

 * @return the decorator for the increase button

 */

protected Decorator<Button> createIncreaseSpinnerDecorator() {

 return

PredefinedDecorators.getInstance().getIncreaseButtonDecoratorFactory().create();

}

/**

 * Creates the decorator for the decrease button. Subclass can override it to

create a

 * different decorator.

 *

 * @return the decorator for the decrease button

 */

protected Decorator<Button> createDecreaseSpinnerDecorator() {

 return

PredefinedDecorators.getInstance().getDecreaseButtonDecoratorFactory().create();

}

FormattedComboBoxes

The purpose of the FormattedComboBox is the same as that of the PopupField, but from a
different approach. FormattedComboBox extends ComboBoxBase. It uses a FormattedTextField
as the editor. It has a same PopupContentFactory as the PopupField which can be used to create
a PopupContent. Both PopupContentFactory can be shared.

We recommend you also create a PopupField for the same data type and use it internally to
create the FormattedComboBox. Here is the actual complete source code for the
ColorComboBox.

/**

 * A <code>FormattedComboBox</code> for {@link Color}.

 */

public class ColorComboBox extends FormattedComboBox<Color> {

 private static final String DEFAULT_STYLE_CLASS = "color-combo-box";

COPYRIGHT © 2002-2013 J IDE SOFTWARE. ALL RIGHTS RESERVED

32

 public ColorComboBox() {

 this(Color.WHITE);

 }

 public ColorComboBox(Color color) {

 super(color);

 }

 @Override

 protected void initializeStyle() {

 super.initializeStyle();

 getStyleClass().add(DEFAULT_STYLE_CLASS);

 }

 @Override

 protected FormattedTextField<Color> createFormattedTextField() {

 return new ColorField();

 }

 @Override

 protected void initializeComboBox() {

 super.initializeComboBox();

 setPopupContentFactory(((ColorField)

getEditor()).getPopupContentFactory());

 }

}

See below for a screenshot of the ColorComboBox.

Figure 14 ColorComboBox

We created the following FormattedComboBoxes in the JideFX.

COPYRIGHT © 2002-2013 J IDE SOFTWARE. ALL RIGHTS RESERVED

33

Figure 15 Existing FormattedComboBoxes in JideFX Fields

Here are some screenshots of the FormattedComboBoxes.

Figure 16 FormattedComboBoxes

Spinners

Introducing a spinner control as JSpinner in Swing? No, JideFX doesn’t have a separate
spinner control. As a matter of fact, there is no need for it because FormattedTextField provides
more features than what JSpinner can provide.

We added the spinner buttons using the feature in the JideFX Decoration product. But we
provide further customizations for the spinner buttons.

COPYRIGHT © 2002-2013 J IDE SOFTWARE. ALL RIGHTS RESERVED

34

SpinnerStyle

There are 11 SpinnerStyles that you can see to customize the position of the spinner
buttons. See the table below.

SpinnerStyle Result

INSIDE_RIGHT_VERTICAL

INSIDE_LEFT_VERTICAL

INSIDE_RIGHT_HORIZONTAL

INSIDE_LEFT_HORIZONTAL

INSIDE_CENTER_HORIZONTAL

OUTSIDE_RIGHT_VERTICAL

OUTSIDE_LEFT_VERTICAL

COPYRIGHT © 2002-2013 J IDE SOFTWARE. ALL RIGHTS RESERVED

35

OUTSIDE_CENTER_VERTICAL

OUTSIDE_RIGHT_HORIZONTAL

OUTSIDE_LEFT_HORIZONTAL

OUSIDE_CENTER_HORIZONTAL

FormattedTextField.asSpinner

To provide better support for the SpinnerStyles, especially for the styles whose spinner
buttons are outside the field, we added two methods to FormattedTextField.

public Node asSpinner();

public Node asSpinner(SpinnerStyle style);

These two methods provide two benefits.

First, if you use asSpinner, you don’t need to add the FormattedTextField to a
DecorationPane to show the spinner buttons because the Node itself is a DecorationPane.

Secondly, while they look exactly the same for all INSIDE_xxx styles, for OUTSIDE_xxx styles,
they look different. See below.

Using the FormattedTextField itself:

Using FormattedTextField.asSpinner.

COPYRIGHT © 2002-2013 J IDE SOFTWARE. ALL RIGHTS RESERVED

36

The asSpinner approah clearly looks better as it put a border around the field and the
spinner buttons so that they look like one control.

Again, nothing is absolute. You can customize the spinner buttons using css. If you choose
large icons for those buttons or the buttons have their own border, using the field itself might
look better. That’s why we give you both options.

