

JideFX Decoration Developer Guide

Table of Contents

PURPOSE OF THIS DOCUMENT ... 2

WHAT IS JIDEFX DECORATION .. 2

PACKAGES .. 2

DEPENDENCY ... 2

DECORATOR ... 2

MUTABLEDECORATOR ... 5

DECORATIONUTILS... 5

DECORATIONPANE ... 6

DECRORATIONSUPPORT AND DECORATIONDELEGATE .. 6

PREDEFINEDDECORATORS ... 7

EXAMPLES OF THE DECORATIONS .. 7

COPYRIGHT © 2002-2013 J IDE SOFTWARE. ALL RIGHTS RESERVED

2

Purpose of This Document

Welcome to the JideFX Decoration, a set of features related to decorate existing controls
for the JavaFX platform. This document is for developers who want to develop applications
using JideFX Decoration.

What is JideFX Decoration

The “decorating” technique is to put a node or nodes next to, or over another node without
changing the existing layout. It would be a lot easier for the developer to focus on the overall
layout and doesn’t have to worry about those small decorations when designing the layout.
Furthermore, the decorations can be added or removed or adjusted on fly based on certain
conditions, without modifying the existing layout. This product is all about how to make it
happen.

Most common usages of the decoration is to show validation results, additional help/hint
information, or show the progress. For example:

 A help icon next to a field which shows a help message when clicking or hovering

 A lock icon next to a field to indicate the field is secured

 An asterisk sign to indicate a field is required

 A watermark over the form to indicate the content is confidential or submitted

 A prompt text that tell users what the control is for

Packages

The table below lists the packages in the JideFX Decoration product.

Packages Description

jidefx.scene.control.decoration Decoration related classes

Dependency

The JideFX Decoration product only depends on the JideFX Common.

Decorator

The Decorator is a class that defines all the necessary information that are required for a
decorator. Here is the list.

 T getNode();

COPYRIGHT © 2002-2013 J IDE SOFTWARE. ALL RIGHTS RESERVED

3

 Pos getPos();

 Point2D getPosOffset();

 Insets getPadding();

 boolean isValueInPercent();

 Transition getTransition();

Except the first method getNode which is to define the decoration node, the next four
methods are all related to the positioning of the decoration node.

The getPos is a javafx.geometry.Pos relative to the target node. The position uses the center
of the decoration node as the anchor point. For example, if the Pos is TOP_RIGHT, it means the
center of the decoration is exactly at the top right corner of the target node. By default, the Pos
is TOP_RIGHT if you didn’t specify one.

The getPosOffset, which is optional, allows you to move the decoration node by an offset on
both x and y directions from the position defined by the getPos. The offset value could be pixels
or a percentage of the size of the decoration node. If it is percentage, the x value is the
percentage of the width of the target node, the y is that of the height.

The next one is the getPadding. We also plan to add another insets for the margin when
JavaFX supports it. Both insets will be applied to the target node. To understand them, please
look at the box model as defined in CSS.

Figure 1 Box model: taken from http://www.w3.org/TR/CSS2/box.html

As you can see from above, the padding will shrink the content of the control, such as the
text input area of a TextField. The margin will shrink the whole control. Because the decoration
node will be put over the target node, the decoration might overlap with the node and clip the
content. Sometimes the overlap is fine but other times, it is not fine. So you can use the padding
and margin to effectively change the content size or the control size so that there is no overlap.
In short, the padding is useful when the decoration is inside the target node, the margin is useful

COPYRIGHT © 2002-2013 J IDE SOFTWARE. ALL RIGHTS RESERVED

4

when the decoration is outside the target node. For now, we only support the padding. When
the margin is supported in JavaFX on a node level1, we will add the margin support.

The padding is completely optional. Please note, you can leave the padding as null which
means let us calculate the padding for you. If so, we will calculate the padding automatically so
that the decoration nodes don’t overlap with the content of the target node.

The fourth information for the positioning is isValueInPercent. If true, both PosOffset and
Padding have a value that in percentage of the decoration node’s width or height. Obviously,
when you don’t know the decoration node size initially, using a percentage value is easy to
control the position.

See below for the effect of the methods.

Figure 2 Positioning of the Decoration Node

The last one is for the getTransition method. You can use it to implement the animation
effect of the decoration node. For example, fade in and fade out, blinking, jumping, flying in and
flying out etc. JavaFX property binding and animation really makes this much easier to
implement. This animation will be played once when the decoration node is installed.

Decorator has several constructors. You can create a decorator like these.

// create a decoration at the TOP_RIGHT corner

new Decorator<>(button, Pos.TOP_RIGHT);

// create a decoration at the CENTER_RIGHT inside the node

new Decorator<>(button, Pos.CENTER_RIGHT, new Point2D(-100, 0));

// create a decoration at the CENTER_RIGHT and bounce when it is shown

new Decorator<>(button, Pos.CENTER_RIGHT, new Point2D(-100, 0), new Insets(0, 100,

0, 0), true, AnimationType.BOUNCE);

1 There is a JIRA for this at https://javafx-jira.kenai.com/browse/RT-27785

COPYRIGHT © 2002-2013 J IDE SOFTWARE. ALL RIGHTS RESERVED

5

MutableDecorator

MutableDecorator extends Decorator to provide additional setters and bindable properties
for the Decorator. Generally speaking, after you create a decorator, you probably will never
modify it. If that’s the case, Decorator should be good enough. Only when you want to change
the position or the decoration node on fly, you may want to use the MutableDecorator.

Just so you know, since a MutableDecorator is mutable, we will have to listen to the change
events from the properties, so it is considered as more expensive than using a Decorator.

DecorationUtils

Now you know how to define a Decorator. The next thing is how to install the decorators.
That’s what the DecorationUtils is for. It has several install methods.

public static void install(Node targetNode, Decorator decorator)

public static void installAll(Node targetNode, Decorator... decorators)

public static void installAll(List<Node> targetNodes, Factory<Decorator>

decoratorFactory)

public static void uninstall(Node targetNode)

You can install multiple decorators to the same node, which can be achieved by calling
install several times or installAll with all the decorators.

See below for an example which we used in our LabeledTextField.

DecorationUtils.install(textField, new Decorator<>(clearButton,

Pos.CENTER_RIGHT, new Point2D(-100, 0)));

DecorationUtils.install(textField, new Decorator<>(labelButton, Pos.CENTER_LEFT,

new Point2D(100, 0)));

The code above will put two buttons inside a TextField on both sides. Both are vertically
center aligned. Since the two buttons only have icon, we used CENTER_RIGHT and
CENTER_LEFT. If the buttons had text, we would have chosen BASELINE_RIGHT and
BASELINE_LEFT so that the text of the buttons will align with the text of the TextField. The two
offsets are 50 and -50. This value will move the buttons to inside the TextField. At last, in order
to avoid the clipping of the text in the TextField, we add 100% (of the button size) padding on
both sides. See below for the result.

Figure 3 A TextField with two Decorators

Please note, JavaFX only allows a Node to be added to the same Scene just once. The
decoration node is a Node so it cannot be reused to decorate several target Nodes. If you want
to use the same decoration several times, please use a factory pattern like this.

Factory<Decorator> asteriskFactory = new Factory<Decorator>() {

 @Override

 public Decorator create() {

 Label label = new Label("", asteriskImage);

 return new Decorator(label, Pos.TOP_RIGHT);

 }

COPYRIGHT © 2002-2013 J IDE SOFTWARE. ALL RIGHTS RESERVED

6

};

// you can use it’s create method to create multiple same decorators and use them

on different Nodes

DecorationUtils.install(nameField, asteriskFactory.create());

DecorationUtils.install(emailField, asteriskFactory.create());

DecorationPane

So far you know how to define a decorator, how to install it to a target node. That’s just half
the story. The decorations won’t show up yet if that’s all you did. The other half of the story is to
use DecorationPane as the target node’s ancestor. It doesn’t have to be the immediate parent.
It will work as long as the DecorationPane is one of its ancestors. You can create a form with a
bunch of nodes, fields, comboboxes, tables, lists, whatever you want, call DecorationUtils.install
to add decoration to some of them, then wrap the whole form in the DecorationPane at the
end. See below for a sample code.

// create nodes and add it to a pane

Pane pane = new Xxxx ();

pane.getChildren().addAll(...);

return new DecorationPane(pane); // wrap the pane into a DecorationPane

It is the DecorationPane which will search for all the decorators installed on its children
(more precisely, descendants) and placed them at the position as specified in the Decorator
interface.

DecrorationSupport and DecorationDelegate

Now we are getting into a more advanced feature. DecorationPane is great and easy to use.
However, there are cases that you can’t insert a DecorationPane into the layout. For example,
inside a TabelView or ListView. That’s when you have to implement the DelegateSupport
interface on an existing Region. Of course, this interface is also implemented by
DecorationPane.

DecorationDelegate works with the DecorationSupport interface to allow any Region
supporting decorations.

To do it, implement DecorationSupport on a Region subclass. In the Region subclass, you
add the following code.

private DecorationDelegate _decorationDelegate;

...

 // initialize it somewhere in the constructor

 _decorationDelegate = new DecorationDelegate(this);

...

 protected void layoutChildren() {

 _decorationDelegate.prepareDecorations();

 super.layoutChildren();

 Platform.runLater(new Runnable() {

 public void run() {

 _decorationDelegate.layoutDecorations();

 }

 });

COPYRIGHT © 2002-2013 J IDE SOFTWARE. ALL RIGHTS RESERVED

7

 }

 public ObservableList<Node> getChildren() {

 return super.getChildren();

 }

 public void positionInArea(Node child, double areaX, double areaY, double

areaWidth, double areaHeight, double areaBaselineOffset, HPos halignment, VPos

valignment) {

 super.positionInArea(child, areaX, areaY, areaWidth, areaHeight,

areaBaselineOffset, halignment, valignment);

 }

Now if you use DecorationUtils to install any decorators onto nodes in this Region, they will
be displayed.

PredefinedDecorators

There are certain use cases for decorations. There are UI design patterns to follow. In this
class, we created many predefined decorators so that you can just take them and use them in
your application. See the table blow for a list of predefined decorators.

Method Purpose

getIncreaseButtonDecoratorFactory An increase button used as the spinner buttons (in
FormattedTextField).

getDecreaseButtonDecoratorFactory A decrease button used as the spinner buttons (in
FormattedTextField).

getClearButtonDecoratorFactory A clear button which can be used to clear the text in a
TextField.

getPopupButtonDecoratorFactory A popup button which can be used to show a popup.

If you want to change the existing factory, you can do it by subclass PredefinedDecorators
and override the methods to create a different decorator factory. Once the subclass is defined,
create a new instance and set it using PredefinedDecorators’ setInstance() method. It is a global
instance. So by setting it, all the decorator factories used internally by JideFX will use yours.

Examples of the Decorations

See below on the left for a form before adding the decorations. It is a typical layout for a
sign up form. It is very boring first of all. Secondly, it also lacks of information such as which are
required fields, requirements for the password etc.

COPYRIGHT © 2002-2013 J IDE SOFTWARE. ALL RIGHTS RESERVED

8

With just a few lines of code, we added some decorations to it. See above on the right.
Mouse over those icons will show a little tooltip of what it is. The red asterisk means the fields
are required. The lock icon indicates the fields are secured by SSL. The question mark means
there is a help message for the corresponding field.

As we mentioned before, the nice thing about the decoration is that it doesn’t affect the
existing layout. While the requirements for the decoration could change over the time in a
project, you don’t need to change the layout to add decorations.

In the example above, those decorations stay there once added. But you can also add or
remove decorations on fly. There are also things that can’t or very hard to do using a regular
layout but now possible with the decorations. For example, after user clicks the sign up button,
we will show a progress control over the whole form (see below on the left) to indicate we are
processing the user’s sign up request. After the sign up process completed succesfully, we show
a button over the whole form to indicate the sign up result (see below on the right).

