
JideFX Common Layer Developer Guide

Table of Contents

PURPOSE OF THIS DOCUMENT ... 2

WHY USING COMPONENTS .. 2

PACKAGES .. 3

SEARCHABLE .. 3

FEATURES .. 6

HOW TO EXTEND SEARCHABLE ... 7

PROPERTIES THAT YOU CAN LISTEN OR BIND .. 8

CSS GUIDE .. 8

INTELLIHINTS ... 9

SHAPEDPOPUP ... 11

POPUPOUTLINE .. 11

SAMPLE CODE .. 12

WRITE YOUR OWN POPUPOUTLINE ... 13

CSS GUIDE .. 14

UTILITIES .. 15

LAZYLOADUTILS .. 16

COPYRIGHT © 2002-2013 J IDE SOFTWARE. ALL RIGHTS RESERVED

2

Purpose of This Document

Welcome to the JideFX Common Layer, a collection of various extensions and utilities for to
JavaFX platform. The JideFX Common Layer is the equivalent to the JIDE Common Layer in the
JIDE components for Swing.

This document is for developers who want to develop applications using JideFX Common
Layer.

Instead of packaging everything into one large jar, we decided to split it into several jars.
They are all open sourced on github. For now, under the same umbrella, there are three
products. Each product can be built and used independently. We may introduce more open
source projects under the JideFX Common Layer umbrella in the future.

Project Name Github Location

JideFX Common https://github.com/jidesoft/jidefx-common.git

JideFX Converters https://github.com/jidesoft/jidefx-converters.git

JideFX Comparators https://github.com/jidesoft/jidefx-comparators.git

In this document, we will mainly cover the controls and features under the JideFX Common.

Why using Components

Thousands and thousands of valuable development hours are wasted on rebuilding
components that have been built elsewhere. Why not let us build those components for you, so
you can focus on the most value-added part of your application?

What kind of components do we build and how do we choose them?

First of all, those components that are commonly and widely used. Our components provide
a foundation to build any Java desktop application. You’ve probably seen them in some other
well-known applications. People are familiar with them. When you see them in our component
demo, most likely you will say “Hmm, I can use this component in my application”.

Secondly, they are extensible: we never assume our components will satisfy all your
requirements. Therefore, in addition, to what we provide, we always leave extension points so
that you can write your own code to extend the component. Believe it or not, our whole
product strategy is based on the extensibility of each component we are building. We try to
cover all the requirements we can find and to build truly general, useful components. At some
point, users will likely find a need we didn’t address, but that’s fine! Our components allow you
to “help yourselves”.

Last, but not least, they will save the end user time. You use a 3rd party component because
you think it will be faster to build on top of it than to start from scratch. If the 3rd party
component is very simple, you probably rather building it yourself so that you have full control
of the code. If you find the 3rd party component is way too complex and way too hard to

COPYRIGHT © 2002-2013 J IDE SOFTWARE. ALL RIGHTS RESERVED

3

configure, you probably also want to build it yourself to avoid the hassle of understanding other
people’s code. With those in mind, we carefully chose what components to include in our
products. We are very “picky” about what components to build. Our pickiness guaranteed that
all those components will be useful thus save your valuable time.

All components in this JideFX Common Layer are general components built on top of the
JavaFX. We built them mainly because we found they are missing from JavaFX. Many of the
components simply extend an existing JavaFX classes to add more features. They probably
should be included in JavaFX anyway.

Packages

The table below lists the packages in the JideFX Common Layer products.

Packages Description

javafx.utils Many utilities

javafx.scene.control.hints IntelliHints related classes

javafx.scene.control.searchable Searchable related classes

javafx.scene.control.popup PopupControl subclasses

Searchable

In JavaFX, ListView, TableView, TreeView, ComboBox, ChoiceBox, TextArea are six data-rich
controls. They are data rich because they can be used to display a huge amount of data. A
convenient searching feature is essential in those controls. The searchable1 feature is to allow
user to type a character and the control will find the next element that matches with the
character.

The Searchable interface is such a class that makes this feature possible. An end user can
simply types any string they want to search for and use arrow keys to navigate to the next or
previous occurrence that matches the string. See below for the list of controls that support
searchable and the corresponding Searchable classes.

1 The idea for the searchable feature really came from IntelliJ IDEA. In IDEA, all the trees and lists are

searchable. We found this feature to be very useful and consider it as one of the key features to improve

the usability of a user interface. As a result, we further extended this idea and make Swing JTable

searchable too. We also added several more features such as multiple select and select all that IDEA does

not have. Now we migrate it from Swing to JavaFX.

COPYRIGHT © 2002-2013 J IDE SOFTWARE. ALL RIGHTS RESERVED

4

Control Searchable class Options

 Searchable: base of all other
searchables

caseSensitive
fromStart
wildcardEnabled
repeats
searchingDelay

ListView ListViewSearchable

TableView
JideTableView (a control
in the JideFX Grids)

TableViewSearchable
JideTableViewSearchable: it uses
TableViewProvider to enhance the
searching experience

searchColumnIndices

TreeView TreeViewSearchable recursive

TextInputControl
TextArea

TextInputControlSearchable

Combobox ComboBoxSearchable showPopup

ChoiceBox ChoiceBoxSearchable showPopup

It is very easy to use those classes. For example, if you have a ListView, all you need to do is:

ListView<String> listView = new ListView<>(...);

new ListViewSearchable<String>(listView);

The same type of implementation is used to make TableView or TreeView searchable – just
replace ListViewSearchable with the corresponding Searchables.

If you need to further configure the searchable, for example make your search criteria case
sensitive, you could do the following:

ListView<String> listView = new ListView<>(...);

ListViewSearchable searchable = new ListViewSearchable<String>(listView);

Searchable.setCaseSensitive(true);

Usually, you do not need to uninstall the searchable from the control. But if for some
reason, you need to disable the searchable feature of the control, you can call
searchable.uninstallListeners().

Below are examples of a searchable ListView and TableView.

COPYRIGHT © 2002-2013 J IDE SOFTWARE. ALL RIGHTS RESERVED

5

Figure 1 Searchable ListView – use up/down arrow key to navigate to the next or previous occurrence

Figure 2 Searchable TableView – use up/down to navigate to the next or previous occurrence

COPYRIGHT © 2002-2013 J IDE SOFTWARE. ALL RIGHTS RESERVED

6

For ComboBox, we can only make non-editable combo box searchable. So make sure you
call comboBox.setEditable(false) before you pass it into SearchableUtils2.

For a TextInputControl such as a TextArea, the searchable popup will not be displayed
unless user types in Ctrl-F. The reason is obvious – because the TextInputControl is usually
editable. If the TextInputControl is not editable, typing any key will show the popup just like
other controls.

Features

The main purpose of searchable is to make the searching for a particular string easier in a
control having lots of data. All features are related to how to make it quicker and easier to
identify the matching text.

Navigation feature - After user types in a text and presses the up or down arrow keys, only
items that match with the typed text will be selected. User can press the up and down keys to
quickly look at what those items are. In addition, end users can use the home key in order to
navigate to the first occurrence. Likewise, the end key will navigate to the last occurrence. The
navigation keys are fully customizable. The next section will explain how to customize them.

Multiple selection feature - If you press and hold CTRL key while pressing up and down
arrow, it will find next/previous occurrence while keeping existing selections. See the screenshot
below. This way one can easily find several occurrences and apply an action to all of them later.

Figure 3 Multiple Selections

2 You may wonder why we only support searchable on non-editable combo box. Despite the fact the

editable-combobox is editable so it can’t accept a keystroke to show the search popup, the “searchable”

feature on an editable combo box is called auto-completion or auto-fill.

COPYRIGHT © 2002-2013 J IDE SOFTWARE. ALL RIGHTS RESERVED

7

Select all feature – Further extending the multiple selections feature, you can even select
all. If you type in a searching text and press CTRL+A, all the occurrences matching the searching
text will be selected. This is a very handy feature. For example, you want to delete all rows in a
table whose “name” column begins with “old”. You can type in “old” and press CTRL+A, now all
rows beginning with “old” will be selected. If you hook up delete key with the table, pressing
delete key will delete all selected rows. Imagine without this searchable feature, users will have
to hold CTRL key, look through each row, and click on the row they want to delete. In case they
forgot to hold tight the CTRL key while clicking, they have to start over again.

Basic regular expression support - It allows '?' to match any character and '*' to match any
number of characters. For example “a*c” will match “ac”, “abc”, “abbbc”, or even “a b c” etc.
“a?c” will only match “abc” or “a c”.

Recursive search (only in TreeViewSearchable) – In the case of TreeSearchable, there is an
option called recursive. You can call TreeViewSearchable#setRecursive(true/false) to change it.
If TreeViewSearchable is recursive, it will search all tree nodes including those, which are not
visible to find the matching node. Obviously, if your tree has unlimited number of tree nodes or
a potential huge number of tree nodes (such as a tree to represent file system), the recursive
attribute should be false. To avoid this potential problem in this case, we default it to false.

Popup position – the search popup position can be customized using setPopupPosition
method using the JavaFX Pos. We currently only support TOP_XXX and BOTTOM_XXX total six
positions. Furthermore, you can use setPopupPositionRelativeTo method to specify a Node
which will be used to determine which Node the Pos is relative to.

How to extend Searchable

Searchable is an abstract class. For each subclass of Searchable, there are at least five
methods need to be implemented.

protected abstract int getSelectedIndex()

protected abstract void setSelectedIndex(int index, boolean incremental)

protected abstract int getElementCount()

protected abstract T getElementAt(int index)

protected abstract String convertElementToString(T element)

The keys used by this class are fully customizable. The subclass can override the methods to
customize the keys. For example, isActivateKey() is defined as below.

/**

 * Checks if the key in KeyEvent should activate the search popup.

 *

 * @param e the key event

 * @return true if the KeyEvent is a KEY_PRESSED event and the key code is

isLetterKey or isDigitKey.

 */

protected boolean isActivateKey(KeyEvent e) {

 return e.getEventType() == KeyEvent.KEY_PRESSED && (e.getCode().isLetterKey()

|| e.getCode().isDigitKey());

}

In your case, you might need additional characters such as ‘_’, ‘+’ etc. So you can override
the isActivateKey() method to provide additional keys to activate the search pop up. See below.

COPYRIGHT © 2002-2013 J IDE SOFTWARE. ALL RIGHTS RESERVED

8

ListViewSearchable listSearchable = new ListViewSearchable(list) {

 protected boolean isActivateKey(KeyEvent e) {

 return ...;

 }

};

 The other methods (belonging to abstract Searchable) that a subclass can override are
isDeactivateKey(), isFindFirstKey(), isFindLastKey(), isFindNextKey(), isFindPreviousKey()

We provided a basic wildcard support when searching. It is possible to implement full
regular expression support. We did not do that because not many users are familiar with the
complex regular expression grammar. It is also because the searchable is such a small
convenient feature, we doubt users wants to type in a complex regular expression on the
popup. However, if your user base is very familiar with the regular expression, you can add the
feature to Searchable. All you need to do is override the compareAsString(String text, String
searchingText) method and implement the comparison algorithm by yourself. This task is very
easy by leveraging the javax.regex package.

Properties that you can listen or bind

There are quite a few properties on Searchable that you can listen or bind if needed. For
example,

typedTextProperty(): the text that is typed by the user which is displayed on the search
popup.

searchingTextProperty(): the text that is being searched for. The only difference between
the searchingText and the typedText is the searchingText is trimed.

searchingProperty(): a boolean flag to indicate there is a searching going on.

matchingIndexProperty(): the index of the element that matches the searching text.

matchingElementProperty(): the element that matches the searching text.

CSS Guide

The following style classes are defined.

Style Class Name Node

searchable-popup A tooltip to show the searching text.

searchable-popup-label The label which is set as the graphics of the tooltip

COPYRIGHT © 2002-2013 J IDE SOFTWARE. ALL RIGHTS RESERVED

9

IntelliHints

IntelliHints is a name we invented to capture a collection of new features that guide users
typing text. Similar features (in other developer related tools) are called “code completion” or
“intelli-sense” in the context of a text editor or IDE. Without getting into too much detail, we
encourage you to run the IntelliHints demo to see different flavors of IntelliHints. IntelliHints is
designed to be extensible. You can easily extend one of existing base IntelliHints classes such as
AbstractIntelliHints or AbstractListIntelliHints or even implement IntelliHints directly to create
your own IntelliHints.

See below for the class hierarchy of IntelliHints related classes.

The IntelliHints is an interface. It has four very basic methods about hints.

Node createHintsNode();

boolean updateHints(Object context);

T getSelectedHint();

void acceptHint(T hint);

AbstractIntelliHints implements IntelliHints. It assumes the hints are for a TextInputControl
and provides a popup to show the hints. However, it has no idea what components the popup
contains. Since in most cases, the hints can be represented by a ListView, here comes the
AbstractListIntelliHints. This class assumes ListView is used to display hints in the popup and
implements most of the methods in IntelliHints except updateHints() methods. That’s why it is
still an abstract class. Whatever classes that extend AbstractListIntelliHints should implement
updateHints() method and set the list data to the ListView.

There are two concrete implementations included in the current release: FileIntelliHints and
ListDataIntelliHints. FileIntelliHints provides hints based on the file system. ListDataIntelliHints
provides the hints based on a known list. Take a look at the following figures below… The first
one is FileIntelliHints. The list contains the files and folders that match what user typed in so far.

Figure 4 FileIntelliHints

TextField pathTextField = new TextField();

COPYRIGHT © 2002-2013 J IDE SOFTWARE. ALL RIGHTS RESERVED

10

FileIntelliHints intelliHints = new FileIntelliHints(pathTextField);

Below is an example of ListDataIntelliHints. It provides hints based on a known list and only
shows those that match what you typed in.

Figure 5 ListDataIntelliHints

Here is the code to create the ListDataIntelliHints above.

TextField urlTextField = new TextField("http://");

ListDataIntelliHints intellihints = new ListDataIntelliHints(urlTextField, urls);

intellihints.setCaseSensitive(false);

Like previously mentioned, IntelliHints can easily be extended. If you can use a ListView to
represent the hints, you can extend AbstractListIntelliHints. For example, if you want to
implement code completion as in any IDE like below, AbstractListIntelliHints should be good
enough for you. Like to do what’s in the screenshot below, all you need to do is to override
createListView() method in AbstractListIntelliHints and set a special list cell renderer.

If your hints are more complex and cannot be represented by a ListView, you will have to
extend AbstractIntelliHints and create your own content for the popup.

IntelliHints is very useful usability feature. If you use it at the right places, it will increase the
usability of your application significantly. Just imagine how dependent you are on the code-
completion feature provided by your Java IDE, why not provide a similar feature to your end
users as well? They will appreciate it. With the help of IntelliHints, adding the feature is not that
far a.

COPYRIGHT © 2002-2013 J IDE SOFTWARE. ALL RIGHTS RESERVED

11

ShapedPopup

ShapedPopup is a popup that can be any shapes. You can find some sample code below but
it is really simple to use. All you need is to new a ShapedPopup, set a PopupOutline, set a
PopupContent, then call showPopup to show it.

Inherited from PopupControl, it has setAutoHide, setAutoFix, setHideOnEscape etc.
properties. In addition, we also added a couple more methods, such as setInsets to add a
padding between the content and the outline, setCloseButtonVisible to show/hide the close
button at the top-right corner.

Two showPopup methods were added to show the ShapedPopup next to a given node. The
Pos parameter is used as the anchor point for the node. The anchor point of the popup will at
the exact location of the anchor point of the node. In case you want to fine tune the position,
you use xOffset and yOffset to do it.

void showPopup(Node node, Pos pos);

void showPopup(Node node, Pos pos, double xOffset, double yOffset);

PopupOutline

The shape of the ShapedPopup is controlled by an abstract class called PopupOutline. It is a
Path that you can draw yourself.

/**

 * PopupOutline is a special path that works along with ShapedPopup. You can

 * write your own PopupOutline to get different shaped popup windows.

 */

abstract public class PopupOutline extends Path {

 /**

 * Sets the width property of the outline.

 *

 * @return the width property.

 */

 abstract DoubleProperty widthProperty();

 /**

 * Gets the height property of the outline.

 *

 * @return the height property.

 */

 abstract DoubleProperty heightProperty();

 /**

 * Gets the origin point. The origin point is the point that points to the

 * specified position of the owner node as in ShapedPopup’s showPopup(Node,

 * Pos)}.

 *

 * @return the origin point

 */

 abstract Point2D getOriginPoint();

 /**

 * Gets the content padding. It is padding between the outline and the content

 * of the actual popup window.

 *

 * @return the content padding.

 */

COPYRIGHT © 2002-2013 J IDE SOFTWARE. ALL RIGHTS RESERVED

12

 abstract Insets getContentPadding();

}

We also created two subclasses – BalloonPopupOutline and RectanglePopupOutline – that
you are use.

Figure 6 A Balloon Shaped Popup

Sample Code

Now we create the ShapedPopup.

ShapedPopup shapedPopup = new ShapedPopup();

shapedPopup.setAutoHide(false);

shapedPopup.setCloseButtonVisible(false);

shapedPopup.setInsets(new Insets(20));

shapedPopup.setPopupContent(new Group(new Label("Welcome to JideFX!")));

// load css if needed

shapedPopup.getScene().getRoot().getStylesheets().add(BalloonDemo.class.getResource

("BalloonPopup.css").toExternalForm());

Now we create PopupOutline using BalloonPopupOutline. We can bind the properties on
the PopupOutline to the fields we defined. At end, we set the outline and show the popup.

BalloonPopupOutline outline = new BalloonPopupOutline();

outline.arrowSideProperty().bind(_arrowSide.valueProperty());

outline.arrowPositionProperty().bind(_arrowPosition.valueProperty());

outline.arrowBasePositionProperty().bind(_arrowBasePosition.valueProperty());

outline.arrowHeightProperty().bind(_arrowHeight.valueProperty());

outline.arrowWidthProperty().bind(_arrowWidth.valueProperty());

outline.roundedRadiusProperty().bind(_roundedRadius.valueProperty());

shapedPopup.setPopupOutline(outline);

shapedPopup.showPopup(_button, _anchorPos.getValue(), _xOffset.getValue(),

_yOffset.getValue());

For RectanglePopupOutline, there is only one property you can set which is for the rounded
radius for a rounded rectangle.

RectanglePopupOutline outline = new RectanglePopupOutline();

outline.setAnchorPosition(Pos.TOP_RIGHT);

COPYRIGHT © 2002-2013 J IDE SOFTWARE. ALL RIGHTS RESERVED

13

Figure 7 Rectangle Popup

Write Your Own PopupOutline

The PopupOueline is a Path except we added a few methods to it. To create your own
PopupOutline, you need to extend it and implement required four methods.

The first thing to create a path. Usually you hardcoded the coordinates in the Path, such as
MoveTo(0,0), HLineTo(20). However, in the PopupOutline, you can’t hard code any values
because the Path will have to adjust automatically when the width/height are changed. The only
way to do it is to use binding. Starting from widthProperty() and heightProperty() which are
part of the PopupOutline abstract class, all values that will be used to create the Path must be
defined as properties. For example, to create a Rounded Rectangle shape, we defined three
properties – roundedRadiusProperty, widthProperty, heightProperty. Here are the code to
create the path. As you can see, it is a lot more complex than hard coded the values.

getElements().clear();

MoveTo startPoint = new MoveTo();

startPoint.xProperty().bind(roundedRadiusProperty());

startPoint.setY(0.0f);

HLineTo topLine = new HLineTo();

topLine.xProperty().bind(widthProperty().subtract(roundedRadiusProperty()));

ArcTo trArc = new ArcTo();

trArc.setSweepFlag(true);

trArc.xProperty().bind(widthProperty());

trArc.yProperty().bind(roundedRadiusProperty());

trArc.radiusXProperty().bind(roundedRadiusProperty());

trArc.radiusYProperty().bind(roundedRadiusProperty());

VLineTo rightLine = new VLineTo();

rightLine.yProperty().bind(heightProperty().subtract(roundedRadiusProperty()));

ArcTo brArc = new ArcTo();

brArc.setSweepFlag(true);

brArc.xProperty().bind(widthProperty().subtract(roundedRadiusProperty()));

brArc.yProperty().bind(heightProperty());

brArc.radiusXProperty().bind(roundedRadiusProperty());

brArc.radiusYProperty().bind(roundedRadiusProperty());

HLineTo bottomLine = new HLineTo();

bottomLine.xProperty().bind(roundedRadiusProperty());

ArcTo blArc = new ArcTo();

blArc.setSweepFlag(true);

blArc.setX(0);

blArc.yProperty().bind(heightProperty().subtract(roundedRadiusProperty()));

COPYRIGHT © 2002-2013 J IDE SOFTWARE. ALL RIGHTS RESERVED

14

blArc.radiusXProperty().bind(roundedRadiusProperty());

blArc.radiusYProperty().bind(roundedRadiusProperty());

VLineTo leftLine = new VLineTo();

leftLine.yProperty().bind(roundedRadiusProperty());

ArcTo tlArc = new ArcTo();

tlArc.setSweepFlag(true);

tlArc.xProperty().bind(startPoint.xProperty()); // close the path

tlArc.yProperty().bind(startPoint.yProperty());

tlArc.radiusXProperty().bind(roundedRadiusProperty());

tlArc.radiusYProperty().bind(roundedRadiusProperty());

getElements().addAll(startPoint, topLine, trArc, rightLine, brArc, bottomLine,

blArc, leftLine, tlArc);

Since all the elements in the Path are bound to those three properties, once we change
these properties, the Path will be updated automatically.

At last, it is important to set the stroke type to use INSIDE so that the Path is fully contained
in its own boundary.

setStrokeType(StrokeType.INSIDE);

Next is to define the getOriginPoint method. It is really up to you to decide where the origin
point of your outline. For the balloon shaped outline, we put the origin point at the tip of the
arrow that sticks out. For a rectangle outline, we allow user to decide where the origin point is
by using setOriginPosition method. The getOriginPoint will return the value as the
setOriginPosition specified.

Last but not the least, it is the getContendPadding method. For a regular shape, you
probably can return an empty insets. But for an irregular shape, you need to calculate to get the
insets. For example a balloon shaped outline, the insets of the side that has arrow will be larger
than the other three side.

CSS Guide

The following style classes are defined.

Style Class Name Node

shaped-popup An AnchorPane that contains the PopupOutline , the
PopupContent and the Close Button. If you want to add
shadow effect of the whole popup, use this style class.

shaped-popup-outline The PopupOutline. You can adjust the fill, background,
stroke etc.

shaped-popup-content The PopupContent. You can adjust the text color and size.

shaped-popup-close-button The Close Button.

COPYRIGHT © 2002-2013 J IDE SOFTWARE. ALL RIGHTS RESERVED

15

Utilities

There are quite a number of utilities under the jidefx.utils package. We just enumerated
them in the alphabetic order. If you would like to learn more about each utility, please refer to
its JavaDoc.

Name Description

AutoRepeatButtonUtils Can make a button automatically trigger action events
continuously

CommonUtils Some commonly used routines

Customizer A functional interface to customize any object

DateUtils A collection of methods related to Calendar/Date

FontUtils A collection of methods related to Font

FXUtils A collection of methods related to JavaFX data types

LazyLoadingUtils Provides an easy way to implement the lazy loading feature in a
Combobox or ChoiceBox. Sometimes it takes a long time to create
the ObservableList for the control. This util can help to lazy
loading the ObservableList.

LoggerUtils A collection of methods related to Logger

PredefinedShapes A collection of predefined shapes

ReflectionUtils A collection of methods which use reflection to call method. They
are mainly used by us internally to be able to use newly added
APIs while keeping backward compatible with old JDKs

SecurityUtils Methods related to security exception, mainly for Applet and
Webstart

SystemInfo A collection of methods to retrieve system information such as
OS, JDK etc.

TypeUtils A collection of methods related to data types

WildcardSupport An interface to support wildcards

COPYRIGHT © 2002-2013 J IDE SOFTWARE. ALL RIGHTS RESERVED

16

LazyLoadUtils

LazyLoadUtils provides an easy way to implement the lazy loading feature in a Combobox or
a ChoiceBox. Sometimes it takes a long time to create the ObservableList for the control. By
using this LazyLoadUtils, we will create the ObservableList only when the popup is about to
show or after a delay, so that it doesn't block the UI thread. The UI will come up without the
ObservableList and will be set later.

To use it, simply call one of the install methods. The callback will take care of the creation of
the ObservableList.

There are two ways to trigger the callback. The first trigger is when the ComboBox or the
ChoiceBox is clicked before the popup content is about to show. The beforeShowing flag will
determine if this trigger will be triggered. Default is true. If this trigger is triggered, we will call
the callback on the UI thread which means users will have to wait for the callback to finish. We
will have to do that because the popup doesn't make sense to show without the ObservableList.
The second trigger is triggered after a delay. The delay time is controlled by the delay
parameter. When it reaches the specified delay duration, a worker thread will run to call the
callback so that it doesn't block the UI. Either trigger can come first but it will be triggered only
once. Ideally, when the UI is shown, if user never clicks the ComboBox or the ChoiceBox, the
second trigger kicks in and populates the data behind the scene. Not ideally, user clicks on it
right away and then he/she has to wait a while. However it is still much better than waiting for
the same period of time before the UI showing.

A typical use case is to create a ComboBox that list all the fonts in the system. However the
Font.getFamilies call is expensive, especially the system has a lot of fonts. The following code
will take care of it.

ComboBox<String> fontComboBox = new ComboBox<>();

fontComboBox.setValue("Arial"); // set a default value without setting the Items

LazyLoadUtils.install(fontComboBox, new Callback<ComboBox<String>,

ObservableList<String>>() {

 public ObservableList<String> call(ComboBox<String> comboBox) {

 return FXCollections.observableArrayList(Font.getFamilies());

 }

 });

