
COPYRIGHT © 2002 - 2011 J IDE SOFTWARE, INC. A LL R IGHTS RESERVED

1

JIDE Desktop Application Framework
Developer Guide

COPYRIGHT © 2002 - 2011 J IDE SOFTWARE, INC. A LL R IGHTS RESERVED

2

Table of Contents
WHAT IS JIDE DESKTOP APPLICATION FRAMEWORK .. 6

AN ARCHITECTURAL FRAMEWORK .. 6
BASE FUNCTIONALITY ... 6
BETTER DESKTOP INTEGRATION .. 7

EXPLORING JIDE DESKTOP APPLICATION FRAMEWORK ... 8
DESKTOPAPPLICATION .. 9

ApplicationLifecycleListener .. 9
Application Data ... 10

DATAMODEL ... 11
Data Persistence ... 12
DataModel Implementations ... 12
Data Origination .. 13
Primary and Secondary DataModels .. 15
Monitoring the Data Lifecycle .. 15

DATAVIEW .. 16
DataViewFactory .. 17

MVC FLOW ... 19
Data Lifecycle ... 19

PRINTING ... 20
COMMANDLINE ... 20

CommandLine and Object Conversion ... 21
ENVIRONMENT VARIABLES ... 21
ACTIONS .. 22
THREADED ACTIVITIES .. 22

Creating an Activity .. 23
Activity Progress ... 23
Activity Actions ... 24

CUSTOM EVENTS ... 25
PREFERENCES .. 26
HELP .. 27
VERSIONING .. 28
VENDOR ... 28
LOCALIZATION .. 28

Localizing Basic Application properties ... 29
OS-Extended Variants .. 30

MAKING A GUI APPLICATION .. 30
APPLICATION UI TECHNOLOGY ... 31
APPLICATION UI HIGHLIGHTS ... 32

Java Cross-Platform Highlights ... 32

COPYRIGHT © 2002 - 2011 J IDE SOFTWARE, INC. A LL R IGHTS RESERVED

3

GNU/Linux Highlights (Gnome) ... 32
GNU/Linux Highlights (KDE) .. 33
MAC OS X Highlights ... 34
Windows XP Highlights .. 35

GUIAPPLICATIONLIFECYCLELISTENER ... 35
ACCESSING THE APPLICATION UI .. 36

Extending an Application UI .. 36
THE GUIAPPLICATION CLASS ... 39
SETTING THE APPLICATION STYLE .. 40

Using Split Application Optional Style ... 41
FramedApplicationFeature .. 42

SETTING FUNDAMENTAL GUIAPPLICATION PROPERTIES .. 45
SETTING THE SWING LOOK AND FEEL .. 46
APPLICATION DATA CYCLE ... 48

Creating Different DataModels and DataViews ... 48
MANAGING MODELS.. 50
MANAGING VIEWS ... 51

DataViewListener ... 53
Secondary and Auxiliary DataViews .. 53

WINDOW MANAGEMENT ... 55
WindowCustomizer ... 55
ApplicationWindowsUI ... 56
Window Sizing .. 57
Window Titling Logic ... 57

WORKING WITH ACTIONS .. 58
Pre-Installed Actions .. 60
User Actions ... 62
Auto Installation of Actions into GUI ... 63

WORKING WITH ICONS ... 66
IconThemes ... 67

WORKING WITH DIALOGS .. 68
Using DialogRequests .. 68
DialogListeners... 69
DialogRequestHandlers .. 70
Why Have Managed Dialogs? .. 70
Presentation Example ... 71
Message Dialogs ... 74
File Dialogs .. 75
User Dialogs ... 75
Legacy Dialogs ... 80

WORKING WITH MENUS ... 80
MenuBarCustomizer ... 80
General Menu Options.. 81

COPYRIGHT © 2002 - 2011 J IDE SOFTWARE, INC. A LL R IGHTS RESERVED

4

A Note about Edit Menus .. 82
Managed UI Menus .. 83
OpenWindows ... 86

WORKING WITH TOOLBARS ... 86
General ToolBar Options ... 86
ToolbarCustomizer ... 87

APPLICATIONFEATURE .. 89
MAKING A DOCUMENT-CENTRIC APPLICATION ... 91

A PLAIN TEXT EDITOR APPLICATION... 92
WORKING WITH FILEFORMATS .. 94

Provided FileFormats ... 94
FileFormat Semantics ... 95
FileFormat Conversions ... 95
Other FileFormat Uses ... 96

COMMANDLINE FILE LOADING .. 96
WORKING WITH DOCUMENT-CENTRIC ACTIONS ... 96
FILE SYSTEM MEDIATION .. 97

FileSystemMediator .. 98
FileSystemResponseHandler .. 99

RECENT DOCUMENTS .. 99
INTEGRATION WITH OTHER JIDE PRODUCTS .. 100

JIDE DOCKING FRAMEWORK .. 100
Normal Docking.. 100
MVC Docking ... 101

JIDE ACTION FRAMEWORK ... 104
DOCUMENTPANE ... 104
JIDE STOCK ICONS .. 105

MAKING A CONSOLE APPLICATION ... 106
CONSOLEAPPLICATION .. 106
CONSOLEAPPLICATION CONSTRUCTORS ... 107

Managing Data ... 108
COMMANDMAP ... 109
CONSOLECOMMANDS .. 109

Built-In Commands ... 109
Creating ConsoleCommands .. 111
Command Arguments .. 112

FILE HANDLING ... 112
CONSOLEVIEWFACTORY ... 112
USING CONSOLEVIEW ... 113

Reading from the Console... 113

COPYRIGHT © 2002 - 2011 J IDE SOFTWARE, INC. A LL R IGHTS RESERVED

5

Console Dialogs.. 114
Writing to the Console .. 115
ConsoleFilter .. 116

CONSOLEVIEWLISTENER ... 116
COMMANDSTRING ... 116

Command Validation .. 117
Type Conversion ... 117

CONSOLE HELP .. 118
CONSOLE PRINTING ... 118
CONSOLEAPPLICATION - ABOUT ... 118

OBJECTFORMAT ... 119
FORMATTING MESSAGES .. 120
IMPLEMENTING CUSTOM PATTERN SYNTAX .. 120

MIGRATING TO JIDE DESKTOP APPLICATION FRAMEWORK 121
AWT AND SWT APPLICATIONS ... 122
SWING APPLICATIONS .. 122
APPLICATION ENTRY POINT ... 123
MIGRATING DATA ... 124
SETTING LOOK AND FEEL .. 124
MIGRATING WINDOW CODE .. 125
MIGRATING ACTIONS .. 126
MIGRATING MENU CODE ... 127
MIGRATING TOOLBAR CODE ... 127
MIGRATING PRINTING CODE.. 128
MIGRATING THE HELP SYSTEM.. 128
MIGRATING PREFERENCES ... 129
MIGRATING ABOUT WINDOW .. 130
MIGRATING STARTUP AND SHUTDOWN FUNCTIONALITY .. 130

JSR-296 COMPATIBILITY .. 130
INTERNATIONALIZATION SUPPORT .. 131

COPYRIGHT © 2002 - 2011 J IDE SOFTWARE, INC. A LL R IGHTS RESERVED

6

What is JIDE Desktop Application Framework
JIDE Desktop Application Framework (JDAF) facilitates the creation of robust cross-platform desktop

application using Java. JDAF will enable you to create quality, scalable and maintainable desktop
applications using Java with unprecedented OS integration and end-user satisfaction.

We believe Java is the definitive technology for developing cross-platform desktop applications. But
we also realize that there are some important realities to confront and issues to resolve so you the
developer will be positioned for success with your next desktop solution. Below we discuss our
motivations for this product.

An Architectural Framework
In the web development community, development metaphors and architectures abound. For example

Jakarta Struts for Web Applications. One columnist counted 50+ web architectures available to the
developer at one point1. Yet on the desktop, there are precious few architectures. To a large extent,
developers are left to reinvent the wheel for each desktop application solution. Why shouldn’t desktop
developers have an architecture that promotes good design and a proven structure for application
development?

JIDE Desktop Application Framework responds by providing a cohesive development framework
following the popular Model-View-Controller (MVC) paradigm. The MVC paradigm is well understood by
developers and proven to be effective for producing low-coupled yet highly-cohesive object-oriented
architectures.

Base Functionality
Making a small frame-based Swing application is fairly straightforward. Even new Java developers can

get there fairly quickly with the Java Tutorials. Most developers are comfortable with classes like JFrame
and the normal palette of Swing Components. You may even be familiar with our JIDE family of Swing
Components. But, things start to get out of hand very quickly when an application gets larger. For
example, introducing the concept of multiple documents starts one down a path of requirements such as
data management, menu wiring, dialogs negotiations, and window management. This behavior is
expected by users but has little to do with core application functionality, yet it takes a significant amount
of time and resources to accomplish. Compound this with the challenges of cross-platform deployment
such as OS Guidelines integration and varying Java VM versions and implementations, and you suddenly

1 Web Frameworks and IDE - Part 3, Yakov Fain, JDJ Oct. 2005, Vol.10, Issue10

COPYRIGHT © 2002 - 2011 J IDE SOFTWARE, INC. A LL R IGHTS RESERVED

7

have a non-trivial venture. Often, underestimating the cost of providing this functionality can cause
release delays or compromises in quality and usability.

Various groups offer some helpful tools. JSR-296 Swing Application Framework looked promising by
addressing the nominal needs of a Java application but has been abandon. On the other hand, there is the
option to re-use solutions like Eclipse or NetBeans Platforms to gain benefits from their architectures.
However, while these RCP platforms do provide base functionality, they were not originally intended as
generic desktop solutions, but as “tools” platforms. As a result, applications inherit infrastructure that may
either be overkill or ill-suited, and applications built on these platforms tend to look like the platform
themselves, being less intuitive to general users. The learning-curve and complexity of working with these
frameworks is also expensive due to a history entrenched in design requirements for complex
development environments.

There remains the need for a generic yet capable desktop application development solution.

JIDE Desktop Application Framework delivers. It was designed from the ground up to be a platform for
non-trivial desktop application development. It provides out-of-the-box application functionality. Full
support for data management, view management, file handling, application-related Actions that handle
single or multiple documents, editing, window management, printing and help integration, and even
command line parsing and console application APIs. All this capability means that you can focus on your
application requirements and let the framework do the rest.

Better Desktop Integration
Java applications have historically wrestled with being well received on the desktop. One could argue

that a “write-once, run everywhere” desktop application may have been counter-intuitive, and
contributed to the lack of acceptance of Java on the desktop because user expectations on their particular
desktop platform where not met.

Java developers are forced to make pragmatic decisions when choosing cross-platform strategies.
Usually the result is a UI that reflects what the developer is accustomed to (or what the tools allow them
to do), or perhaps what is most convenient and economical. Java purports taking care of cross-platform UI
details via Swing, but often developers expect more from Swing that it was designed to do. These factors
explain why Mac users are confronted with applications having a “main window” with an integrated menu
bar at the top, and wonder what “Exit” is doing in the File menu, and why dialogs look so strange.
Windows users wonder where the “Exit” command is and where the toolbars are, etc.

Swing has come a long way. Look and Feel fidelity continues to improve with each Java release. But
there are many cross-platform issues beyond Swings ability to facilitate. Solely relying on Java API’s (Swing
or SWT) for application development will result in architectures that by default stand in stark defiance to
certain prominent OS platform guidelines, hence breaking fundamental user expectations by design. The
greater therefore is one of cross-platform integration and user expectation.

COPYRIGHT © 2002 - 2011 J IDE SOFTWARE, INC. A LL R IGHTS RESERVED

8

Each OS vendor provides OS Guidelines detailing what is expected of a desktop application on their
platform. Guidelines are concerned with creating a consistent application experience for their users. While
guidelines do specify some user interface conventions; button spacing, fonts, etc., most of the
specifications are focused on application experience.

Guidelines are less concerned with how windows render, but instead with how windows represent
documents, how they interact with other document windows, how they integrate with menus, what
happens when they open and close, what dialogs are presented, and with what kind of information.
Guidelines are less concerned with how menus render, but with what menus should be available, in what
order, with what capabilities, and how they should act in various states of the application.

Native developers easily abide by these guidelines due to native tooling and know-how. AWT/Swing,
even SWT are irrelevant to this point because “component-level” look and feel is expected by the user,
and as Java developers we rely on Swing to deliver this. There is another world of look and feel that needs
to be considered. We have identified this characteristic as Application Look And Feel, and believe it to be a
fundamental requirement for modern, cross-platform Java desktop development, least we propagate the
mistakes of the past.

JDAF supports this application look and feel concept by introducing a unique feature called a
“Managed Application UI”. This industry-first technology places the control of the desktop application’s UI
on the framework. This allows the Application UI to be adaptive to the platform so that OS guidelines can
be respected. For each OS the Application UI emulates native OS document window presentation
characteristics, provides recommended dialog presentations, negotiations with the file system, provides
recommended menu and toolbar configurations, standard icon themes, and other unique OS-guidelines-
recommended integration features and nuances. And like Swing Look And Feel, you get this functionality
for free. The net effect is that the framework manages your UI automatically. You need only work at the
Component-level.

With a “Managed Application UI” your product provides an intuitive, native-feeling application
experience. Finally, you have a truly cross-platform solution!

Exploring JIDE Desktop Application Framework
A desktop application, in its most abstract form, displays and/or manipulates data. The JIDE Desktop

Application Framework (JDAF) facilitates this abstraction by using Model-View-Controller (MVC)
architecture. A DataModel is the model, a DataView is the view, and the DesktopApplication is the
controller. Put another way, a DesktopApplication controls DataModels and DataViews.

While the framework is extensive in capability, much of the functionality just works. Besides defining
your DataModels and DataViews, using the API to create an OS-Guidelines compliant application can take
as little as a few lines of code:

COPYRIGHT © 2002 - 2011 J IDE SOFTWARE, INC. A LL R IGHTS RESERVED

9

DesktopApplication application = new GUIApplication(“My Application”, MyDataModel.class, MyDataView.class);
application.run(args);

There is a wealth of configuration capabilities available before you call run(), but in a sense, it’s that
simple. Providing application-specific behavior is accomplished by attaching various listeners, customizers,
Actions, factories and other service objects to your DesktopApplication instance.

Here is an example of creating an application knowing even less of JDAF, having only a Java
component as a “view”:

GUIApplication.run(“My Application”, MyPanel.class);

You may also subclass and configure the application it in the constructor.

The following sections will take you on a brief tour of the fundamental classes in JDAF. Later in the
document we discuss creating particular types of applications and then migration strategies from existing
codebases to JDAF.

Unless mentioned specifically, all configuration options happen against the application object, prior to
calling run(). When run() is called, the application lifecycle takes control of the JVM lifecycle.

DesktopApplication
The DesktopApplication is the “controller” portion of the MVC architecture. It is the focal-point of your

application. DesktopApplication is an abstract class that defines the desktop application lifecycle inside of
your main() function.

There are two direct concrete subclasses; ConsoleApplication and GUIApplication. A third usability
GUIApplication subclass is the FileBasedApplication, which facilitates a file or document-centric
application. These classes may be used directly or extended; whichever is more convenient or appropriate.
A number of listeners and service objects allow configuration of the application’s behavior at runtime.

To start a DesktopApplication, you call run(String[] args). To terminate a DesktopApplication, you call
exit(), though this is usually invoked from the UI.

ApplicationLifecycleListener

To monitor and react to the basic lifecycle of a DesktopApplication instance, you may register an
ApplicationLifecycleListener. This listener is called at critical times during the life of the application with
the following notifications:

• APPLICATION_OPENING
• APPLICATION_OPENED

COPYRIGHT © 2002 - 2011 J IDE SOFTWARE, INC. A LL R IGHTS RESERVED

10

• APPLICATION_CLOSING
• APPLICATION_CLOSED

Each event method is passed an ApplicationLifecycleEvent, having a reference to the
DesktopApplication instance. The APPLICATION_OPENING and APPLICATION_CLOSING event methods
may throw an ApplicationVetoException, in which case the application is terminated or kept from
terminating, respectively. There is an ApplicationLifecycleAdapter available as a convenience
implementation.

The ApplicationLifecycleListener is a great place to perform general application tasks, because it
straddles the application. For example:

• Show a Splash Screen - The APPLICATION_OPENING event preempts Swing class-loading, so a
splash screen will open snappily, particularly if an AWT is used instead of a Swing class.
APPLICATION_OPENED can then be used to close the splash screen.

• Check Security - Use the APPLICATION_OPENING event to do security tasks such as user license
checking, LDAP authentication, configure application states based on environment, or even
introduce your JIDE license information in an encapsulated way. This is also a good place to set an
alternate look and feel if desired.

• Initial GUI Behavior - The APPLICATION_OPENED event is a great place to perform some default
initial behavior. The GUI is loaded and ready to go. Show a welcome screen using StandardDialog
from JIDE Dialogs or use the TipOfTheDayDialog component from JIDE Components to aid in
application instruction.

• Application Cleanup - The APPLICATION_CLOSING or APPLICATION_CLOSED events are a great
place to perform clean up chores such as storing layout data from the JIDE Docking Framework or
storing other application state, saving preferences, removing temp files, or any other clean up
functionality.

Application Data

A DesktopApplication, as a Controller, needs to be able to originate and manage application models
and views. Here are the primary controller methods for the application:

• public DataModel newData(Object) - introduces a new data into the application

• public DataModel openData(Object) – introduces an old data into the application

• public void saveData(DataModel) – persists a data

• public void resetData(DataModel) – re-opens a data

• public void closeData(DataModel) – removes the data from the application

COPYRIGHT © 2002 - 2011 J IDE SOFTWARE, INC. A LL R IGHTS RESERVED

11

The newData() and openData() methods use criteria to determine what kind of data to open in the
application. The resulting data is represented as a DataModel. DataViews are created independently of
the model in an implementation dependent manner. More detail on this is presented after we discuss the
Model and View layers, or see MVC Flow.

DataModel
To implement the model portion of our MVC architecture, we use the DataModel interface.

Application data can take many forms. Data can be a unique object structure, effectively modeling the
domain space, or a predefined asset, like character data, a byte image buffer, or some other formatted
block, or a proxy to data, such as a JDBC ResultSet. DataModel makes any data suitable to the framework.

Put another way, DataModel is simply an application interface to your data, which can be any plain
Java object. And you should add properties to your implementation as is appropriate to you data modeling
needs.

A DataModel has a name and a semantic name property:

• public String getName();

• public String getSemanticName();

DataModel names must be unique for each DataModel in the DesktopApplication. The name is used
as the unique readable identification of the data. The DesktopApplication ensures that the name is a
unique when it is created for each DataModel. The semantic name is used to denote a “meta name” to the
user, such as “Document”, “Project”, “Drawing”, etc. Semantic names do not have to be unique, providing
a name-spacing level of identification for your models.

When a DataModel is originated from the DesktopApplication you may provide input of some kind by
which to determine which DataModel to create. We call this the input criteria. This is stored in the created
DataModel and may be accessed via.

• public String getCriteria();

A DataModel facilitates the concept of being new, and can be flagged as being dirty, which advertises
its candidacy for persistence.

• public void init(DesktopApplication);

• public boolean isNew();

• public boolean isDirty();

• public void setDirty(boolean);

COPYRIGHT © 2002 - 2011 J IDE SOFTWARE, INC. A LL R IGHTS RESERVED

12

A DataModel contains an UndoManager that can be used to record UndoableEdits specific to the
DataModel.

• public UndoManager getUndoManager();

DesktopApplication can support multiple DataModels at a time or different types. To access a
DataModel from the DesktopApplication, use getDataModel(name), getDataModel(Class) or any of the
other getX() methods. In a DesktopApplication only one DataModel should have the application “focus” at
a time. This notion is facilitated by the DesktopApplication methods:

• public DataModel getFocusedDataModel();

• public void setFocusedDataModel(DataModel dataModel);

Use the DesktopApplication method setAllowMultipleOpens(false) to allow only one DataModel open at a
time.

Data Persistence

Most important to the DataModel interface are those that facilitate the origination and persistence of
data. These are:

• public void newData()

• public void openData() throws DataModelException;

• public void saveData() throws DataModelException;

• public void resetData() throws DataModelException;

• public void closeData()

The DesktopApplication calls these methods automatically with primary DataModels during the
application lifecycle. You may call them at any time.

DataModel Implementations

AbstractDataModel is a root implementation of DataModel. It contains bound properties that are
used by the framework, and you can register PropertyChangeListeners as well. The currently bound
properties are:

• PROPERTY_NAME
• PROPERTY_SEMANTIC_NAME
• PROPERTY_CRITERIA
• PROPERTY_DIRTY
• PROPERTY_NEW

COPYRIGHT © 2002 - 2011 J IDE SOFTWARE, INC. A LL R IGHTS RESERVED

13

A basic concrete extension is BasicDataModel, which supports a single data property.

• public Object getData();

• public void setData(Object);

• public void dataChanged();

Setting the data property causes the PROPERTY_DATA property change event to be sent. The
dataChanged() method may be called to notify listeners that the value in the data property has changed,
without setting the entire property. This is useful when the data object is a complex object as opposed to
a primitive value.

BasicDataModel has empty implementations of the data cycle methods, with the exception of the
newData() method, which by default will populate the data property with the criteria property if the data
property is null. This allows a simple pass-through of information from the application's origination of the
DataModel when using DesktopApplication.newData(criteria). You can override the other methods as you
need.

Another concrete implementation is FileDataModel. It is a BasicDataModel subclass that reads and
writes its data value to a file. FileDataModel supports a File and FileFormat to control data binding to and
from files. With this class, the data cycle methods do not need to be implemented at all, since the file
functionality is implemented.

Data Origination

The DesktopApplication methods newData(criteria) and openData(criteria) “originate” DataModel
instances. These methods are called either by the UI via the NewAction or OpenAction, or may be called
programmatically. DataModel origination is facilitated by adding one or more DataModelFactory
instances. DataModelFactory has one method, createDataModel(Object):

application.addDataModelFactory(new DataModelFactory() {
 public DataModel createDataModel(Object criteria) {
 // return a DataModel implementation
 }
});

The createDataModel(Object) method takes some criteria as an argument, intended to be used to
determine whether to vend a DataModel. This criteria value will be stored in the DataModel under the
criteria property.

COPYRIGHT © 2002 - 2011 J IDE SOFTWARE, INC. A LL R IGHTS RESERVED

14

When a request for data is made of the DesktopApplication, each DataModelFactory is consulted with
the provided criteria until a non-null DataModel instance is returned. In this way, multiple data of
potentially different types can be introduced to the DesktopApplication.

While it is trivial to create a DataModelFactory, we provide some functional implementations that
remove the need to create one in most circumstances.

• BasicDataModelFactory - BasicDataModelFactory instantiates a single DataModel type based on a
single criteria value. You may supply the criteria and a DataModel class, otherwise it creates a
BasicDataModel. If the criteria value is not defined, it always creates a DataModel.
BasicDataModelFactory is a good “default” factory for simple data cases.

• FileDataModelFactory - FileDataModelFactory should be used to support DataModels that
marshal their data to and from the underlying file system. FileDataModelFactory requires that
criteria be resolvable to a Java File or FileFormat and that a FileFormat be registered to accept
support for such data. The File, along with the FileFormat, is associated with a FileDataModel
instance. Opening, saving, and reverting are facilitated through the File/FileFormat relationship.

Working with files is covered more thoroughly later in this document in the “Making a Document-
Centric Application” section.

• HashedDataModelFactory - A DataModelFactory that allows creation of multiple criteria to
DataModel class mappings via an internal Map. This provides a reusable factory multiple
DataModels need to be returned based on the criteria.

• MappedDataModelFactory - A DataModelFactory that allows data types to be mapped to
DataModel classes. This provides a reusable factory when the type of the criteria distinguishes the
DataModel to originate.

FileDataModelFactory, MappedDataModelFactory, and HashedDataModelFactory all provide the
ability to supply a java.util.Map of initialization values. The key value pairs of the map are applied to the
bean properties of the DataModel immediately after construction. Otherwise, a resources file using the
[classname.property] resource key pattern can also be used to initialize parameters on a newly created
DataModel, provided that the DataModel is your own subclass and has a resources.properties bundle file
in the same package.

All DataModelFactory objects can be accessed from the DesktopApplication using
getDataModelFactories(), or a single DataModelFactory can be accessed by type, using the
getDataModelFactory(Class) method.

COPYRIGHT © 2002 - 2011 J IDE SOFTWARE, INC. A LL R IGHTS RESERVED

15

Primary and Secondary DataModels

JDAF understands two fundamental states of a DataModel; primary and secondary. This is denoted at
runtime by the isPrimary() method. If isPrimary() is true, the DataModel is considered a primary
DataModel. This means it is focusable in the application. Only one focusable DataModel may be set in a
DesktopApplication at a given time. This DataModel is accessible using the getFocusedModel() and
setFocusedModel() methods. Focusing a DataModel also focuses its corresponding DataView. Hence we
consider the DataView “primary” as well, for the sake of discussion. In a GUIApplication, primary
DataViews are installed automatically by JDAF according to the application style, and the standard
GUIApplicationActions, installed in the menubar and toolbar automatically, operate on notion of the
primary models and views. For example, when “Save” is invoked, the primary DataModel is the target for
the save.

 Conversely, if isPrimary() returns false, the DataModel is considered a secondary DataModel. This
means it is not focusable and therefore not automatically recognized by the DesktopApplication.
Secondary DataViews are not handled by the managed UI and are not acknowledged in the managed data
lifecycle. However, this is not a lesser status, just different. The benefits are many. First, you can
orchestrate many DataModels and DataVews in a window in combination with a primary DataModels and
DataViews. This is perfect for “docked” or “split” views or really any UI you want to include in the MVC.
Also, as the developer you have total control over the DataModel lifecycle. You can tell it when to open,
close, and save2. Finally, while JDAF manages the association between DataModel and DataView, in the
context of GUIApplication, you control how the DataView is installed into the window. This is done by
installing a DataViewHandler. (See Making a GUI Application for more details.)

The primary status of a DataModel shouldn't change during its lifetime. That is, primary DataModels
should always return true from isPrimary() and secondaries should always return false. There are two
default DataModel implementations that support secondary status by default: SecondaryBasicDataModel
and SecondaryFileDataModel. These are similar in all ways to BasicDataModel and FileDataModel accept
in their primary status is false.

Monitoring the Data Lifecycle

Since a DesktopApplication manages one or more DataModels, it may be useful to be notified of
DataModel activity. A DataModelListener can be added to the DesktopApplication to receive DataModel
events. The DataModelEvent provides access to the DesktopApplication and the DataModel, and in some
cases allows control flow based on the event. The events are as follows:

• DATA_MODEL_INITIALIZED

2 GUIAppication does provide an autoSaveSecondaryDataModels property that called saveData() when secondary DataViews
are closed.

COPYRIGHT © 2002 - 2011 J IDE SOFTWARE, INC. A LL R IGHTS RESERVED

16

• DATA_MODEL_OPENING

• DATA_MODEL_OPENED

• DATA_MODEL_RESETTING

• DATA_MODEL_RESET

• DATA_MODEL_SAVING

• DATA_MODEL_SAVED

• DATA_MODEL_CLOSING

• DATA_MODEL_CLOSED

As you can see, all but the DATA_MODEL_INITIALIZED event, which is a notification of new data,
provides a pre/post operation opportunity. In all pre-operation methods (ending with ‘ing), an
ApplicationVetoException may be thrown to signify whether the action should be aborted.

A DataModelAdapter is available as a convenience implementation.

DataView
To facilitate the view portion of the MVC architecture, we introduce the interface DataView. DataView

defines how the user visually experiences and interacts with a given DataModel. For every DataModel
created, there will be a corresponding DataView. The DesktopApplication manages this association of
DataModel/DataView pairs.3

DataView is primarily concerned with facilitating the display and manipulation of a DataModel. It has
four methods:

• init(DesktopApplication)

• getViewComponent()

• updateView(DataModel) throws DataModelException

• updateModel(DataModel) throws DataModelException

The init() method is called when the DataView is instantiated from a DataViewFactory. It allows the
DataView to initialize itself and reference the application object. The getViewComponent() method allows

3 A common vernacular for this DataModel/DataView combination would be a “Document”. We have intentionally avoided
this terminology for multiple reasons; to circumvent confusion with Java Text API Document, the W3C DOM Document, and our
own DocumentComponent API. Furthermore, the term Document is very specific to a file-based application. While this type of
application is supported, JDAF is significantly more abstract. Not only “Document” can be conceived but other more distributed
models may be realized in the future, that otherwise would break the “Document” metaphor.

COPYRIGHT © 2002 - 2011 J IDE SOFTWARE, INC. A LL R IGHTS RESERVED

17

the interface to return an object that is suitable to the DesktopApplication implementation. For example,
in a GUIApplication this is a java.awt.Component.

The updateView() method is called whenever the DataModel is new, opened or reset. This allows the
DataView to reflect the state of the DataModel. This method may be called manually whenever the view
needs to refreshed.

The updateModel() method is called when the DataModel is about to be saved to allow the DataView
to update the state of the DataModel first. This method may be called manually whenever the model
needs to be refreshed from the view.

DataViewFactory

DataViews are dynamically introduced into the DesktopApplication using a DataViewFactory. The
createDataView(DataModel) method takes a DataModel as a parameter. The idea is to let the factory
decide which view would provide the visual interface to the model.

application.addDataViewFactory(new DataViewFactory() {
 public DataModel createDataView(DataModel data) {
 // return a DataView implementation
 }
});

The visual and interactive nature of the view is highly application dependent. It is up to the developer
to develop these views and add factories that vend appropriate DataViews for a given DataModel in the
DesktopApplication.

Provided DataViewFactory Objects

JDAF comes with some convenience and application-specific DataViewFactory implementations:

• BasicDataViewFactory – This factory vends a DataView implementation depending on the Class
you provide, irrespective of the DataModel. If no class is provided it vends a DataViewPane
implementation.

• BasicComponentViewFactory – This factory vends an anonymous DataView by wrapping a
standard JComponent.

• MappedDataViewFactory – This factory vends a DataView implementation based on the
DataModel Class mapping you define. Convenient for multiple DataModel type implementations.

• FileDataViewFactory – This factory only responds to FileDataModels and vends a DataView based
on a Class-mapping that associates FileFormats to DataViews. See the section “Making a
Document-Centric Application” later in this document.

COPYRIGHT © 2002 - 2011 J IDE SOFTWARE, INC. A LL R IGHTS RESERVED

18

• SemanticNameDataViewFactory – This factory vends a DataView implementation based on the
semantic name of the input DataModel. Convenient for multiple DataModel type
implementations.

• ConsoleViewFactory – This factory is only supported by the ConsoleApplication, which is
preconfigured with said factory. The Console Application API is covered more thoroughly later in
this document.

All DataViewFactory objects can be accessed from the DesktopApplication using
getDataViewFactories(), or a single DataViewFactory can be accessed by type, using the
getDataViewFactory(Class) method.

Multiple DataViews

In a GUIApplication, multiple DataViews may be associated to a single DataModel. This is
accomplished by providing multiple DataViewFactory implementations dedicated to producing a single
unique DataView for the same DataModel instance. If the DataModel is primary, the first DataView
returned is considered the primary DataView and will be installed automatically in accordance with the
application style. Any following DataViews are considered auxiliary views and, like secondary DataViews,
require a DataViewHandler so that you may determine where in the UI to install the secondary DataViews
in the UI. In order for this capability to work you must set the setAllowMultipleDataViewsPerModel().

Provided DataViews

JDAF comes with some basic DataView implementations primarily to support the two fundamental
application types:

• DataViewPane –a JPanel subclass. It may be subclassed to create a DataView for a GUIApplication
or populated using a DataViewListener when using the BasicDataViewFactory without a class
argument. Subclasses should use initializeComponents() to install Swing Components. (Note:
Windowing is managed by the application automatically). The updateModel() and updateView()
methods are used to synchronize the DataModel and DataView states, and are called
automatically during the application lifecycle. DataViewPane provides other convenience facilities,
like access to the GUIApplication, facilities for “dirtying” the associated DataModel, adding
UndoableEdits to the DataModels UndoManager, and interfacing with the Edit Menu.

• ConsoleView - the lone DataView implementation used by ConsoleApplication. It is created
automatically with each DataModel. ConsoleView is a virtual view behind the actual command
prompt. It provides many typed read and write methods and interfaces with JIDE
ObjectConverters to manage String-to-Object conversions. This class is integral part of the Console
Application API.

COPYRIGHT © 2002 - 2011 J IDE SOFTWARE, INC. A LL R IGHTS RESERVED

19

MVC Flow
Now that we have introduced the DesktopApplication (Controller), DataModel (Model), and DataView

(View), it seems prudent to summarize how the DesktopApplication MVC architecture operates, just to be
clear.

Concerning model origination, consider the following conceptual diagram:

The following basic sequence occurs:

1. The controller methods newData(criteria) or openData(criteria) originate a DataModel via a
DataModelFactory using input criteria.

2. The DataModel init(DesktopApplication) method is called and criteria is bound to the
DataModel.

3. The DataModel newData() or openData() methods are called, respectively.

4. The DataModel is used as an argument to originate as many DataViews via DataViewFactories.
This results in a pair of DataModel/DataView(s).

5. The DataView(s) init(DesktopApplication) method is called.

6. The DataView(s) updateView(DataModel) method is called to update the view with the model.

During this cycle, the respective DataModel and DataView events are fired. There will always be a
DataModel/DataView(s) pair. But there may be many DataModel/DataView pairs, of the same or different
types, at any time. DesktopApplication contains getX() methods for retrieving these model and view
objects in various ways. For example, getDataModel(DataView) and getDataView(DataModel) provide for
this association.

Data Lifecycle

A DesktopApplication needs to be able to create, load, save, reset, and close the application data. We
call this the Data Lifecycle. The DesktopApplication manages the data lifecycle through five methods.
DesktopApplication delegates calls to DataModels and DataViews as appropriate to the application
implementation. Below is a table of the associated behavior:

DesktopApplication (Controller) DataModel (Model) DataView

(View)

newData(Object criteria) newData() updateView(DataModel)

DesktopApplication DataModel

DataView

COPYRIGHT © 2002 - 2011 J IDE SOFTWARE, INC. A LL R IGHTS RESERVED

20

openData(Object criteria) openData() updateView(DataModel)

saveData(DataModel); saveData(); *updateModel(DataModel)

resetData(DataModel); resetData(); updateView(DataModel)

closeData((DataModel); closeData(); N/A

printData(DataModel) [Implement PrintSource] [Implement PrintSource]

• DataView.updateModel(DataModel) is called before DataModel.saveData().

Printing
To facilitate printing, the DesktopApplication uses a Printer object. Printer encapsulates the workflow

of printing in Java. In order to use Printer, it must be supplied with java.awt.Pageable object.

When printData(DataModel) is called, the focused DataModel and DataView are examined to see if
they are a PrintSource. If a PrintSource is resolvable, it is used to vend a Pageable instance, and the
instance is set into the Printer to begin printing. By default DataViewPane implements the PrintSource
interface. Simply provide the Pageable in the getPageable() method to enable printing.

The subject of Java Printing is outside the scope of this document, but JDAF provides one Pageable
implementation called ComponentPageable which can be used to print a Swing component. This is a very
minimal implementation for on-off light-weight work. It is up the developer to control pagination, for
example. But it may suffice for a quick printing solution. We have planned to provide more robust output
architecture in the future. It may also be possible to provide PrintSource interfaces to existing printing
products.

In the DesktopApplication, Printer can be disabled by calling setEnabled(false), or removing the Printer
object altogether via setPrinter(null). This should be done before a call to DesktopApplication.run(). In a
GUIApplication, the later will cause the print-related items to be completely removed from the menus and
toolbars. The former will cause them to become disabled. The absence of a PrintSource will also disable
them.

CommandLine
CommandLine implements a Singleton4 that stores Java program arguments from the application

main() method, and provides universal access to the arguments along with parsing capabilities.
CommandLine can be used two ways; explicitly and implicitly. Explicit use of CommandLine means to
capture the arguments of the main method using the class itself:

4 Design Patterns: Elements of Reusable Object-Oriented Software (Addison-Wesley Professional Computing Series).
http://mahemoff.com/paper/software/learningGoFPatterns/

http://mahemoff.com/paper/software/learningGoFPatterns/

COPYRIGHT © 2002 - 2011 J IDE SOFTWARE, INC. A LL R IGHTS RESERVED

21

public static void main(String[] args) {
 CommandLine.set(args);
 // create application…etc
}

The CommandLine.set() method can only be called once. Other calls are ignored. It parses the
command line and creates a static CommandLine instance.

Implicit capture of the CommandLine is achieved by calling the run(String[] args) signature method of
a DesktopApplication, like so:

public static void main(String[] args) {
 GUIApplication application = new GUIApplication(“My App”);
 application.run(args);
}

The run(args) method internally captures the CommandLine. With either method, CommandLine can
be accessed using CommandLine.get() for the life of the JVM. CommandLine inherits all the parsing
capabilities of CommandString, so the command string can be easily extracted, pattern matched, type
converted, or checked for switches.

CommandLine and Object Conversion

CommandString and hence CommandLine use the ObjectConverter API for converting Strings to
Objects. It implements ConverterContextSupport, so the developer can set a custom library of
ObjectConverters to use during the parsing of arguments.

DesktopApplication has a ConverterContext that can be used when parsing arguments from the
CommandLine. This ConverterContext can be used by developers to provide access to the application
instance during conversions. It is available via getConverterContext() from a given DesktopApplication.
Note, removing this ConverterContext is not recommended.

Environment Variables
For years the System.getenv() method had been deprecated and hard-blocked by an Exception,

preventing developers from gaining programmatic access to environment variables. While Java 1.5
brought the feature back, now there is a function gap if trying to develop for “1.4 and above”.

The Environment class solves this issue by providing a unified mechanism for accessing desktop
environment variables on any 4+ Java2SE platforms. Environment is a Singleton. To access an environment
variable use:

COPYRIGHT © 2002 - 2011 J IDE SOFTWARE, INC. A LL R IGHTS RESERVED

22

String var = Environment.getInstance().getVariable("myVariable");

Actions
A DesktopApplication has an ActionMap so that application-specific functionality can be associated

with the application. The ActionMap is actually an ApplicationActionMap. This map supports
PropertyChangeListeners, so that Action additions and removals can be tracked.

ApplicationAction is an Action interface extension that simply adds an APPLICATION_KEY property,
which is used to reference the DesktopApplication instance in the Action. When any Action is added to an
ApplicationActionMap, the DesktopApplication instance will be referenced in the Action with this key so
that it is available when actionPerformed() is called.

AbstractApplicationAction is a default implementation of the ApplicationAction interface. It
additionally provides the methods install() and uninstall() which are called when the application instance is
referenced to the Action. This provides a hook for behavior such as wiring or formatting.

In a GUIApplication, a GUIApplicationActionMap is used. This ActionMap facilitates the binding of
resources to Actions based on their action key. The ActionKeys interface defines common menu and
toolbar commands. By registering an Action using one of these keys, the Action will be bound with
resources that reflect OS defaults such as names, icons, accelerators, and mnemonics. This behavior is
facilitated by the ActionResourcesBinding. To change resource binding behavior, your Action may
implement the Resourcesful interface and return its own ResourcesBinding object. See the section
“Working with Actions” for more information.

GUIApplicationAction is best suited for a GUIApplication. It introduces the LARGE_ICON property and
provides some beneficial access methods and some threaded behavior for better perceived performance.

ConsoleCommand is an ApplicationAction used by the ConsoleApplication to implement commands in
the console.

JDAF comes with a complete set of Actions that provide base functionality both for GUIApplications
and ConsoleApplications.

Threaded Activities
GUIApplication provides a powerful mechanism for executing robust threaded tasks via the

ActivityManager. Each GUIApplication has an ActivityManager. To access it, use getActivityManager().
ActivityManager provides a context for threaded execution using an Activity class. This API provides
monitoring functions as well. You may query the ActivityManager for currently running threads using
getActivities() and isActivityRunning().

COPYRIGHT © 2002 - 2011 J IDE SOFTWARE, INC. A LL R IGHTS RESERVED

23

Creating an Activity

To create a threaded task, subclass Activity. Activity represents a single job or work, and is as simple to
implement as an Action. Simply implement activityPerformed(). In this method do a slice of work, as you
would inside a loop. Activity manages all the details.

To run an Activity, use the ActivityManager.
application.getActivityManager().run(new Activity(“My Activity”, 100, 10) {
 public void activityPerformed() {
 // do a slice of work here
 }
});

Activities have a name by which they are identified in the ActivityManager. This name must be unique.
If you do not define a name, the ActivityManager will name the Activity for you. The ActivityManager will
also ensure Activity names are unique. The constructors allow you to specify the name, number of
steps/iterations, and sleep time.

Use INDETERMINATE_STEPS for the sleep time to specify an indeterminate task or blocking activity.
Use INFINITE_STEPS to specify execution with an unknown number fo steps. Alternately you may use the
constructors that have no input for number of work steps. In this case, activityPerformed() is called once,
and the activity finishes when the method completes. You can call finish() to normally quit the Activity
before the steps are complete. Any exception in activityPerformed() will cause cancel() to be called safely
(after activityPerformed() completes), though it may be called manually to abort the Activity from inside
or outside the Activity, at any time. To keep an Activity from being canceled, use setCanCancel(false). This
simply advertises that the Activity should not be canceled for the benefit of listeners. It does not swallow
Exceptions.

To react to competed status you may implement activityFinished() and/or activityCanceled(). These
are called on termination of the thread.

The getStepsComplete() gives you the current iteration. You can call setStatusMessage() and
setSecondaryStatusMessage() as well to provide additional information to listeners. The application is
accessible from the Activity using getApplication(). Activity supports user properties, similar to Actions, as
well and many more controls over the threaded behavior. See javadoc.

Activity Progress

Activities should never invoke the AWT Event Thread. Activity supports ProgressListeners to report
feedback to the GUI instead. By registering one or more ProgressListeners you can provide feedback to
your GUI application in a thread-safe way. This creates a separation, like a Model/View, in the design of
your threaded activities.

COPYRIGHT © 2002 - 2011 J IDE SOFTWARE, INC. A LL R IGHTS RESERVED

24

JDAF provides many powerful ProgressListener implementations that provide GUI feedback and
blocking capabilities so that you achieve immediate productivity. Simply add one or more of these to your
Activity as appropriate using addProgressListener().

• ActionBlock - Block one or more Actions.

• ComponentBlock - Block one or more Components or Containers.

• GlassPaneBlock - Use to block DataViews and Windows.

• DialogBlock - Use to block using a dialog. Presents a Progress dialog by default.

• ProgressFeedback - Use to provide feedback in the UI. It supports expressing progress information
to certain compatible Components, like labels and progress bars. Just set the name of a
compatible Component (see javadoc) in your DataView with the same name as used in the
ProgressFeedback constructor, and that component will reflect the progress of the Activity.

It is also simple to create your own ProgressListeners. There are three methods to implement:

• progressStart()

• progressProgressing()

• progressEnd()

Each method receives a ProgressEvent with the state of the progress and source. In this case, the
source is the Activity.

Alternately, if your task is specialized enough for reuse, you can use the GUIActivty, which is a
ProgressListener to itself, encapsulating both the threaded logic and GUI feedback in a single object. Just
be mindful that this implementation is shared between the worker thread and the AWT Event Thread; i.e.
do non-UI work in the Activty methods and UI work in the ProgressListener methods only.

You may also add global ProgressListeners to the ActivityManager. These will listen to all running
Activity objects. These can be attached at any time using addProgressListener(). Note, when using the
ProgressFeedback globally, be sure to use the name-based component binding method instead of
explicitly defining a Component object, as this is more robust for a multi-window application.

Activity Actions

An Activity can be fired from an Action using ActivityAction. ActivityAction will automatically block the
Action until the task completes. This is handy in menus and in buttons.

Activity activity = new Activity(“Try Me”, 100, 10) {
 public void activityPerformed() {
 // do a slice of work here
 }
});

COPYRIGHT © 2002 - 2011 J IDE SOFTWARE, INC. A LL R IGHTS RESERVED

25

Action action = new ActivityAction(activity);
JButton button = new JButton(action);

An ActivityAction assumes the name of the Activity by default and automatically adds an ActionBlock to
the Activity to control the enable state of the button or menu item.

Custom Events
A DesktopApplication provides a centralized bus for creating a robust, cooperative, and maintainable

messaging infrastructure for your application. This is done with the EventManager. To access it, use
getEventManager(). EventManager facilitates decoupled communication between user controllers,
models, views or any other object in your application.

EventManager supports a "publish and subscribe" model for event dispatch. A source object uses the
manager to publish an event, and one or more recipients may subscribe to receive the event, which comes
in the form of a SubscriberEvent.

Facilitating an event is very simple. For the EventManager to acknowledge an event, you must first
add a unique event, like so:

 EventManager eventManager = application.getEventManager();
 eventManger.addEvent("MyEvent");

Events are simply Strings and must be unique. Objects can “subscribe” to receive this event by
implementing one of the EventSubscriber interfaces, which has one method, doEvent(SubscriberEvent
event). To subscribe to an event you do this:

 eventManager.subscribe("MyEvent", eventSubscriber);

To send the event, you use your source object and the event like so:

eventManager.publish("MyEvent", source);

The actual sending of the event is accomplished by an EventContext internally. There is a
DefaultEventContext which provides bifurcated (forked) event notification to subscribers depending on
the EventSubscriber interface implemented. If your subscriber simply implements EventSubscriber, it will
receive events on the publishing thread. If your subscriber implements ThreadedEventSubscriber, the
event is received on a separate thread than the published thread. If your subscriber implements
GUIEventSubscrber, the event is received on the AWT event thread. To facilitate a different type of
publishing model, you may implement an EventContext and associate it with an event type when it is
added:

COPYRIGHT © 2002 - 2011 J IDE SOFTWARE, INC. A LL R IGHTS RESERVED

26

 EventManager eventManager = application.getEventManager();
 eventManger.addEvent("MyEvent", new MyEventContext());

 // or later with

 eventManger.setEventContext("MyEvent", new MyEventContext());

The EventContext is sent with the SubscriberEvent. JDAF provides a few EventContext
implementations:

Class Description

DefaultEventContext Used by default if no EventContext is supplied
when the event is registered. Bifurcates
events based on subscriber implementation.
Supports a userObject that can facilitate
additional state information to subscribers.

GUIEventContext All events are sent on the Swing Event
thread.

FocusedWindowGUIEventContext A GUIEventContext that only publishes events
to JComponent subscribers in the front-most
window.

FocusedDataViewEventContext A GUIEventContext that only sends to the
focused DataView, and optionally secondary
DataViews in the front-most window

FocusedDataModelEventContext Only sends to the focused DataModel

Subscribers may subscribe and unsubscribe to single events or all events, or just events in a given
EventContext class. Note that while there are unsubscribe() methods, the EventManager uses
WeakReferences for subscribers, so there is no need to be concerned with explicit unsubscription for the
sake of garbage collection. To completely clean the EventManager call purge().

Preferences
A DesktopApplication uses the Preferences API to manage application preferences internally. The

getPreferences() method returns a java.util.Preferences node. The node is based on your application name

COPYRIGHT © 2002 - 2011 J IDE SOFTWARE, INC. A LL R IGHTS RESERVED

27

thus ensuring that multiple uses of the framework produce a unique node on a given platform. While this
is a convenience feature, you may or may not desire to use this mechanism for your application.

An alternative is to manage your own preferences using a Properties file or other file type. The
DesktopApplication method getDataDirectory() is useful in this regard as it will return the platform-
appropriate location for storing such files based on OS conventions. This directory may be used for other
purposes such as general session data or layout data.

In either case, JDAF does provide a facility for a Preferences dialog. Please see the section Working
with Dialogs.

Help
A DesktopApplication facilitates help integration via the interface HelpSource. A HelpSource

implementation is set via setHelp(HelpSource). The HelpSource interface provides a simple hook for
executing your help system:

• openHelp(Object hint)

The hint argument is intended to influence the way the help is presented. HelpService defines some
default constants that should be supported in an implementation:

• TOC_TOPIC
• INDEX_TOPIC
• SEARCH_TOPIC
• TUTORIAL_TOPIC

ConsoleApplication uses this to provide help for ConsoleCommands. GUIApplication provides a means
for providing help throughout the UI using the HelpSource.HELP_HINT_PROPERTY_NAME value. A
particular help topic can be defined like so:

1. In a HelpAction set the topic property. When no windows are open or no other help is defined,
this topic is used. It is set to TOC_TOPIC by default.

2. As a client property in a DataView component. Use the HelpSource.HELP_HINT_PROPERTY_NAME
as the property key and the topic as the value.

3. In dialogs, in the DialogOptions of a DialogRequest add a help button and then put the topic as a
value in the DialogOptions using put(HelpSource.HELP_HINT_PROPERTY_NAME, “topic”).

For dialogs the help button will trigger the HelpSource with the topic. Otherwise, If the focused
DataView topic is set, via the client property, it will be used. Finally, the topic in the HelpAction will be
used.

COPYRIGHT © 2002 - 2011 J IDE SOFTWARE, INC. A LL R IGHTS RESERVED

28

The OS platform-specific help key will trigger the HelpAction or the HelpSource directly. This platform
default key detection can be changed by implementing a HelpKey subclass and overriding detect(). To
install the custom HelpKey, call setHelpKey() on the ApplicationMenuBarsUI object of the
AppplicationUIManager.

Versioning
A DesktopApplication can maintain a displayable version string.

public String getVersion ();

public void setVersion (String version);

The default value is “1.0”. While this is a marginal treatment of application versioning, the value is
used under some circumstances such as a default “About” dialog and an introduction prompt for a console
application. In both cases, the behavior can be customized, so feel free to use or ignore this facility as you
see fit.

Vendor
A DesktopApplication can maintain a displayable vendor string.

public String getVendor();
public void setVendor(String version);

This value may be null or used to set the vendor of the application. This value is used in the default
“About” dialog, but more importantly it is used on some platforms in the dataDirectory path (see
getDataDirectory()).

Localization
It is common practice for desktop development to store String resources in properties files for

localization. To provide some additional power and ease to working with resources, we have provided a
powerful but simple resource management system through the Resources class.

To access String resources you use the Resources class like so:
String string = Resources.getString(getClass() , “key”);

The Class defines the root location of the bundle. Other signatures provide access by bundle name
alone.

Without specifying the bundle name, JDAF uses the default name “resources” by default. Therefore
files are called “resources.properties”. This can be globally changed by using the System property:

-Djdaf.bundle.name

COPYRIGHT © 2002 - 2011 J IDE SOFTWARE, INC. A LL R IGHTS RESERVED

29

Resources is a factory for Resources objects. Each Resources object represents a root bundle at a
particular package location. Resources contains typed access methods for primitive conversions and
provides String-to-Object conversions using the ObjectConverter API.

You can also use a powerful formatting object called ObjectFormat. ObjectFormat can be an
alternative to MessageFormat. It facilitates much more readable resource strings by using a simple but
powerful expression language. You can mix-in MessageFormat syntax, also. Resources supports reading
Strings using this UL-syntax or a custom syntax that you configure in the ObjectFormat. Resources also
can “fold” resources on one another allowing resource Strings to reference other resource Strings in a
bundle file. See the section “Object Format” towards the end of the document for UL-syntax examples.

Resources provides a powerful feature called “Polymorphic Resource Binding”. This feature allows
resources to be loaded into an Object based on a naming convention in the bundle. This is a great
productivity tool for localization. Instead of initializing fields in the Object with calls to resource bundles,
the fields can be bound to resources via a call to Resources.bind(object). If the object obeys simple bean-
naming conventions, resources in the form [simpleClassName.fieldName] will be set into the
object. This includes detecting super class resources stretching over other bundles in differing packages.

Bean binding is but one kind of binding mechanism. Resource binding is flexible and extensible using
the ResourcesBinding interface. A second signature allows for this object to be passed in to facilitate the
binding mechanism. For example, resources can also be bound to Actions and Maps using the
ActionResourcesBinding and the MapResourcesBinding, respectively.

Localizing Basic Application properties

If you create a resources file (resources.properties) at the root of your application subclass, you can
define the default properties of the application. Let us say the application subclass is called MyApplication.
The properties file would look like this:

MyApplication.name=”My Application”
MyApplication.version=”1.0”
MyApplication.vendor=”My Company”

If you use the application instance instead, for example GUIApplication, the resource file needs to be at
the system root level (src root or jar root) and the file would look like:

GUIApplication.name=”My Application”
GUIApplication.version=”1.0”
GUIApplication.vendor=”My Company”

COPYRIGHT © 2002 - 2011 J IDE SOFTWARE, INC. A LL R IGHTS RESERVED

30

When using resources in this manner, use the no-name constructor of a DesktopApplication, or pass
null as the name.

OS-Extended Variants

Since one focus of JDAF is convincing cross-platform application presentation and behavior, Resources
must be OS-sensitive. For true cross-platform development there is an additional challenge not only of
language support, but of OS guidelines. For example, internally JDAF supports OS-specific menu names,
buttons names, icons, dialog messages, and more.

The Resource Bundle API could support this concept of OS/Platforms through its “variant” bundle
name qualifier. However, there are no standards as to how platform variants are expressed, and more
seriously the variant is the last qualifier in the bundle lookup chain, making it impossible to provide no-
variant, non-location or default resource files that are OS-specific. To this end JDAF supports an extension
to the resource mechanism, we call it the OS-extended-variants . You can place the OS variant on the end
of any resource bundle file name, including after the normal variant, and it will respect the OS/platform.
Given the OS-Variant WIN, all the following bundle names are legal:

resources_WIN.properties

resources_en_WIN.properties

resources_en_US_WIN.properties

resources_en_US_NewYork_WIN.properties

resources.properties

You may define the bundle name without the extended OS variant and it will operate as normal,
irrespective of OS-platform.

Since JDAF supports certain OS/platforms via its Managed UI, the name of the properties files must
match the respective variants supported by JDAF. To aid the developer in providing these files, Resources
provides the static method createResourceFiles(). This method will create or update a set of resource files
for a given Locale for each supported OS-extended-variants in JDAF. This ensures that Resources is
synchronous with the active Application UI. Multiple calls to this method are non-destructive, so it can be
called more than once to add support for new variants as OS-guideline support is added.

Making A GUI Application
GUIApplication provides a robust application framework for the GUI desktop application. It provides a

baseline user interface for you, automatically managing document windowing, standard dialog
negotiations, standard menus, icons, and toolbars. JDAF supports the underlying platform via the
ApplicationUIManager classes. Each manager class is written to emulate the respective OS-guideline

COPYRIGHT © 2002 - 2011 J IDE SOFTWARE, INC. A LL R IGHTS RESERVED

31

specifications. This feature imparts an intuitive, native feel to your application and additionally relieves
you of the boiler-plate overhead usually associated with GUI application development.

Application UI Technology
Before we get into developing a GUI Application, let us touch on the “Managed UI” feature. This

feature automatically provides an OS-specific, guidelines-compliant application UI to manage your models
and views, but you may find yourself interfacing with it at times, particularly if setting OS-specific options.

The call to GUIApplication run() will eminently start the Application UI. (The UI is started on the event
thread, so is unnecessary to place run() on the Event thread.) The UI is managed by an
ApplicationUIManager. Each supported OS has a respective ApplicationUIManager implementation. An
ApplicationUIManagerFactory selects the appropriate ApplicationUIManager implementation, depending
on the underlying OS, during construction of the GUIApplication instance. The
ApplicationUIManager.getVariant() method in ApplicationUIManager determines which OS that the UI will
facilitate. The constants are currently:

• JAVA_CROSS_PLATFORM
• LINUX_GNOME
• LINUX_KDE
• MAC_OS_X
• WINDOWS_XP

As Application UI support is added, the constants will grow.

While the System Properties identifies the OS via “os.name”, as can our own SystemInfo class, the
JDAF Application UI has specific OS-support and attempts to choose the most appropriate Look and Feel to
achieve the best possible OS integration. In other words, these two technologies (JDAF and Look and Feel
API) are working together to try to achieve the highest-degree of believability on a given OS/platform.

With this in mind, to make UI-based decisions on a given platform you should rely on the constants
returned from the installed ApplicationUIManager getVariant() method. This also concerns variants in
resource bundles as well. There are no standards for variants in the Resource Bundle API, so using JDAF
variants is important (Use the Resources.createResourceFiles() to generate default bundle files with
correct OS variants).

You may also use the OSApplicationCustomizer to make clean platform coding decisions that are
driven from this logic.

COPYRIGHT © 2002 - 2011 J IDE SOFTWARE, INC. A LL R IGHTS RESERVED

32

Application UI Highlights
While not all platforms are directly supported yet, we endeavor to introduce additional OS support in

future updates. If an OS is not directly supported by the framework we use the Java Cross-Platform
Application UI, which implements the Sun Java Look and Feel Guidelines.

Below we highlight what guidelines-recommended features can be expected when your application
runs on a supported OS/platform.

Java Cross-Platform Highlights

Guidelines for a Cross-Platform Java application are described in detail by the document Java Look and
Feel Design Guidelines by Sun Microsystems. JDAF uses the CrossPlatformApplicationUIManager class to
support features from that specification. Following are some highlights:

• Guidelines-compliant Dialog Presentation
• SDI Windowing Interface
• Compliant Window Titling
• API to the Java Look and Feel Graphics Repository *
• Large and Small Toolbar implementation
• Recommended Menu and Toolbar Items

*In order for this Application UI to work, the Java Look and Feel Graphics Repository jar (jlfgr1_0.jar) should be in
the Java classpath. This jar can be downloaded from Sun at
http://java.sun.com/developer/techDocs/hi/repository/. The Icons from this repository can be accessed using
the CrossPlatformIconsFactory, though the managed UI uses them automatically.

A System property option is available that will force JDAF to use the
CrossPlatformApplicationUIManager on all OS platforms. Use the System property “usecp=true”. While
this option somewhat defeats the purpose of the application look and feel feature, it may be desirable for
those who require a consistent UI, for perhaps corporate reasons. For general or commercial
development, however, we recommend this not be done.

GNU/Linux Highlights (Gnome)

Guidelines for GNU/Linux (Gnome) applications are described in detail by the web publication Gnome
Human User Interface Guidelines. JDAF uses the LinuxGnomeApplicationUIManager class to support
features from that specification and observances from other popular Gnome software, when this
application UI is used. Following are some highlights:

• Guidelines-compliant Dialog Presentation including button icons and save-timing info
• SDI Windowing Interface and Gnome-MDI (using Tabs)

http://java.sun.com/developer/techDocs/hi/repository/

COPYRIGHT © 2002 - 2011 J IDE SOFTWARE, INC. A LL R IGHTS RESERVED

33

• Compliant Window Titling including traditional dirty mark (*)
• Large Gnome Toolbars and Icons
• Recommended Gnome Menus and Icons

*It is highly recommended that Java 6 be used on Linux, as there is a significant improvement in the Look and
Feel fidelity of the GTKLookAndFeel. In earlier versions the general look is extremely poor and dramatically degrades
the believability of a Gnome application. If this not possible, or another look and feel is desired, it may be desired to
remove some of the automatic Gnome-ish attributes of the application UI. Icons in the menubars and buttons of
dialogs can be removed, for example, using the manager.

While we do not directly support Solaris yet, some newer Solaris configurations use Gnome as the
Desktop Manager. To cause JDAF to use the LinuxGnomeApplicationUIManager on Solaris, set the system
property “usegnome=true”. JDAF uses the “GNOME_DESKTOP_SESSION_ID” environment variable to
detect Gnome.

GNU/Linux Highlights (KDE)

Guidelines for GNU/Linux KDE Desktop applications are described in KDE User Interface Guidelines.
JDAF uses the LinuxKDEApplicationUIManager class to support features from that specification and
observances from other popular KDE software, when this application UI is used. Following are some
highlights:

• Guidelines-compliant Dialog Presentation including button icons and orientation
• SDI Windowing interface with popular round-robin window positioning
• Traditional window titling semantics with embedded dirty flags
• Common menu compliance with KDE icons and Special Go menu

*It is highly recommended that Java 6 be used on Linux, as there is a significant improvement in the Look and

Feel fidelity of the GTKLookAndFeel. In earlier versions the general look is extremely poor and dramatically degrades
the believability of a KDE application. Furthermore, we recommend that the latest version of a KDE distribution be
used as earlier ones may not work as well with GTKLookAndFeel, which was designed for Gnome. If this not possible,
or another look and feel is desired, it may be desired to remove some of the automatic KDE-ian attributes of the
application UI. Icons in the menubars and buttons of dialogs can be removed, for example, using the appropriate
manager.

A System property option is available that will force JDAF to use the LinuxKDEApplicationUIManager.
Use the System property “usekde=true”. Otherwise, JDAF uses the “KDE_FULL_SESSION=true”
environment variable to detect KDE.

COPYRIGHT © 2002 - 2011 J IDE SOFTWARE, INC. A LL R IGHTS RESERVED

34

MAC OS X Highlights

Guidelines for a Mac OS X application are described in detail by the web publication Apple Human
Interface Guidelines by Apple Computer. JDAF uses the MacOSXApplicationUIManager class to support
features from that specification when running on Mac OS X. Following are some highlights:

• Automatic integration of recommended Java integration System properties (You do not have
to do anything special)

• Guidelines-compliant Dialog Presentation *
• Guidelines-compliant File Alerts and Negotiations
• SDI Windowing interface with window dirty dot and other platform nuances
• API Access to “Brushed Metal” Window Background Effect and other properties **
• Guidelines-compliant Menus, including special Window menu behavior
• Single Application Menubar
• Unified Toolbar Support (on Leopard/Java5) ***
• Native OS X application menu bar integration of Actions

* We are working on animated “dialog sheets” next.

** Apple suggests that the brushed-metal window background effect only be used on applications that show a
single window (think iTunes®.) You can set this behavior using the DesktopApplication method
setAllowsMultipleOpens(false). And set the background effect using the OSXProperties method
setBackgroundEffect(). It accepts the following constants:

• BACKGROUND_EFFECT_NORMAL
• BACKGROUND_EFFECT_BRUSHED_METAL
• BACKGROUND_EFFECT_BRUSHED_METAL_ROUNDED

*** Normally toolbars are turned off for OS X because they are non-standard. If you turn them on, Leopard OS
guidelines suggest using the “unified toolbar” guidelines which has the toolbar merged with the window title bar and
has some button styles and layout specifics. JDAF will take care of all the details with the caveat that you must set
OSXProperties.setBackgroundEffect (UNIFIED_TOOLBAR) immediately in your main method. You may then optionally
use the methods in the MacOSXApplicationToolBarsUI to apply toolbar button styles while building your toolbars.

Note: there are some Apple guideline recommendations that currently are impossible to provide. Both bugs in
Apple’s Java implementation and lack of API on the Java side prevent them. We are constantly looking for ways to
get around these issues. Still, we believe our first offering is high-fidelity and we will continue to improve it with each
update.

COPYRIGHT © 2002 - 2011 J IDE SOFTWARE, INC. A LL R IGHTS RESERVED

35

Windows XP Highlights

Guidelines for a Windows XP application are described in detail by the web publication The Official
Guidelines for User Interface Developers and Designers by the Microsoft Corporation. JDAF uses the
WindowsXPApplicationUIManager class to support features from that specification as well as conventions
from popular native software, when running on Windows XP. Following are some highlights:

• SDI or classic MDI windowing interface. MDI with full-frame expansion features*
• Classic or Modern Icon themes depending on Classic mode detection
• Guidelines-compliant file negotiations, including illegal file name protection
• Guidelines-compliant Menu and Toolbar Items
• Inline recent documents with fuzzy path formatting
• Popular window arrangement features **
• Conventional Windows Hotkey integration (invisible accelerators)
• Automatic use of the WinLAF Project, if jar present. ***

* The WindowsXPApplicationUI uses an SDI windowing interface by default. To get a classic Windows MDI
interface, use the application style MDI_ APPLICATON_STYLE when creating a GUIApplication. If TDI is desired instead
you can bitwise OR the style FORCE_WINDOWS_XP_ TDI_APPLICATION_STYLE with the MDI style. Alternatively, you
can use TDI_APPLICATION_STYLE, but this wholesale sets TDI on all platforms, which may not be desirable.

** The both SDI and MDI WindowsXPWindowGuidelines facilitate the special “Arrange” window commands
popular in many MS Office applications. This functionality will arrange all open windows evenly in a grid pattern. This
function can be configured using the WindowArranger object via the getWindowArranger() method.

*** A popular pre-Java 6 project for tweaking the Swing Windows Look and Feel is the WinLAF Project. This jar
(winlaf-0.5.1.jar) modifies the Windows Look and Feel to make it more functional and accurate on pre-Java 6
systems. We highly recommend downloading and adding this jar to the classpath if your application will be using the
traditional Windows Look and Feel. The WindowsXPApplicationUIManager will automatically load this jar if
appropriate.

GUIApplicationLifecycleListener
 A special ApplicationLifecycleListener subclass is available for GUIApplications. The

GUIApplicationLifecycleListener contains an additional event method called guiOpening(), which can be
used to detect when the UI is about to be displayed for the first time. This differs from
applicationOpening() which is called prior to any engagement of Swing resources.

COPYRIGHT © 2002 - 2011 J IDE SOFTWARE, INC. A LL R IGHTS RESERVED

36

Accessing the Application UI
While the application UI is managed automatically, there are cases when accessing the UI directly is

desired. The ApplicationUIManager is composed of a set of ApplicationUI classes, each dedicated to
implementing guidelines-compliancy in areas of the UI.

The root application UI classes are ApplicationWindowsUI, ApplicationDialogsUI,
ApplicationMenuBarsUI and ApplicationToolBarsUI. To work with the UI programmatically, access the
ApplicationUIManager from the GUIApplication using getApplicationUIManager(), then use the respective
get methods: getWindowsUI(), getDialogsUI(), getMenuBarsUI(), and getToolBarsUI(). If TDI is being used,
getTabbedUI() will return a TDIApplicationUI object.

Using the Abstract Factory Pattern5, each OS-specific ApplicationUIManager manages dedicated
subclasses that implement OS-specific UI behavior. For example:

Extending an Application UI

Generally, the behavior of the application UI is suitable in most situations; much like the Swing Look
and Feel is generally suitable. However, the behavior of a managed UI can be overridden for a given OS if
desired.

When a GUIApplication is constructed, it relies on an ApplicationUIManagerFactory to create the
appropriate ApplicationUIManager, based on the underlying OS. To control which ApplicationUIManager

5 Design Patterns: Elements of Reusable Object-Oriented Software (Addison-Wesley Professional Computing Series).
http://mahemoff.com/paper/software/learningGoFPatterns/

WindowsXPApplicationUIManager

WindowsXPApplicationWindowsUI

WindowsXPApplicationDialogsUI

WindowsXPApplicationMenuBarsUI

WindowsXPApplicationToolBarsUI

MacOSXApplicationUIManager

MacOSX ApplicationWindowsUI

MacOSXApplicationDialogsUI

MacOSXApplicationMenuBarsUI

MacOSXApplicationToolBarsUI

ApplicationUIManager

http://mahemoff.com/paper/software/learningGoFPatterns/

COPYRIGHT © 2002 - 2011 J IDE SOFTWARE, INC. A LL R IGHTS RESERVED

37

is vended, you would need to subclass the ApplicationUIManagerFactory and return it from a
DesktopApplication subclass via defaultApplicationUIManagerFactory().

The factory has various createX() methods for each supported OS/platform. These methods can be
overridden to provide extended implementations of a given ApplicationUIManager object.

JDAF-managed Swing Replacements

Since JDAF manages the basic UI framework, you loose a degree of control over the types of
implementation classes. (This is not a loss per se, as JDAF is making intelligent cross-platform decisions
that otherwise would not be practical to make in normal code). If you require your own implementation of
a basic Swing class managed by JDAF automatically, such as JFrames or JIDE library components such as
DockableFrames or DocumentPanes, we have provided a mechanism. You may supply your subclass of the
desired Swing object as a System property according to the following table in which case JDAF will honor
your requirement in the most compatible way. Please use these System properties:

Property Name Root Class Comments

jdaf.window javax.swing.JFrame Data Windows for use in Non-
Docking and Non-Action
Framework Applications

jdaf.toolbar javax.swing.JToolBar Use only in Non-Action
Framework Applications.

See jdaf.dockable.menubar

jdaf.menubar javax.swing.JMenuBar Use only in Non-Action
Framework Applications. See
jdaf.dockable.menubar

jdaf.mdi.window javax.swing.JInternalFrame Use in MDI on Windows OS
only

jdaf.tdi.tabbedpane com.jidesoft.swing.JideTabbedPane Use only in TDI Applications

jdaf.framed.tabbedpa
ne

com.jidesoft.swing.JideTabbedPane Used for Tabs in
SplitApplicationUI using
FramedApplicationFeature

jdaf.dockable.toolbar com.jidesoft.action.CommandBar Use only in Action Framework
Applications

COPYRIGHT © 2002 - 2011 J IDE SOFTWARE, INC. A LL R IGHTS RESERVED

38

Property Name Root Class Comments

jdaf.dockable.menuba
r

com.jidesoft.action.CommandMenuBar Use only in Action Framework
Applications

jdaf.tdi.documenttabb
edpane

com.jidesoft.document.DocumentPane Use only in TDI Applications
when DocumentPane is
specified

jdaf.tdi.documentcom
ponent

com.jidesoft.document.DocumentCom
ponent

Must implement the
(JComponent, String, String,
Icon) constructor

jdaf.dockable com.jidesoft.docking.DefaultDockable
Holder

Use when using Docking
Framework only

jdaf.dockable com.jidesoft.action.DefaultDockableBa
rHolder

Use when using Action
Framework only

jdaf.dockable com.jidesoft.action.DefaultDockableBa
rDockableHolder

Use when using Docking
Framework and Action
Framework

jdaf.mdi.dockable com.jidesoft.docking.DefaultInternalFr
ameDockableHolder

Use for Docking Framework
for internal frames on MDI
Windows OS only. Note that
jdaf.dockable or
jdaf.dockablebar is used for
the application window.

jdaf.dockableframe com.jidesoft.docking.DockableFrame Subclass for DockableFrames
when using Docking
Framework

Note that all subclasses should have an empty constructor, unless documented otherwise in the
comments. Some resources such as menus, dialogs and buttons do not support this feature because
runtime implementation choices keep the class from being a predictable root implementation.

COPYRIGHT © 2002 - 2011 J IDE SOFTWARE, INC. A LL R IGHTS RESERVED

39

The GUIApplication Class
Making a GUI application generally starts by instantiating an instance of GUIApplication and

configuring its properties. Since the UI is managed, the remaining concerns for the developer are:

1) Determining the application style

2) Determining what DataModel(s) the data will be managed with

3) Adding DataViews for the DataModels

4) Adding application-specific Actions for Menus and Toolbars

Developing printing and integrating help are optional steps. If printing or help are not going to be
supported in your application, we recommend calling the GUIApplication methods setPrinter(null) and
setHelp(null), respectively. The UI will configure to completely remove these options as appropriate to the
OS.

You create an application instance like so:

GUIApplication application = new GUIApplication (“My Application”);
// configure application…
application.run(args);

There are also static implementations of run() that provide an interesting development option focused
on convenience. For example:

GUIApplication.run(“My App”, new MyApplicationFeature() {
 public void install() {
 // configure application
 }
});

You may of coarse subclass GUIApplication and provide the configuration in the constructor.

However you approach the use of GUIApplication, JDAF promotes a “set it and forget it” style of
property configuration. We call these “pre-run” options because they are intended to define the general
nature of the GUIApplication, and then be committed with a call to run(). Unless otherwise noted, all
application configuration options in the framework are pre-run properties and normally should not be
changed during the lifetime of the application.

GUIApplication constructors support varied sets of convenience for defining the basic attributes of the
application. Keep in mind that the application style can only be set via a constructor because it sets up
fundamental UI constructs internally. Beyond that, a JDAF application requires a minimum of one
DataModelFactory and one DataViewFactory in order to run. The possibilities emerging from the

COPYRIGHT © 2002 - 2011 J IDE SOFTWARE, INC. A LL R IGHTS RESERVED

40

combination of DataModelFactory and DataViewFactory objects provides for many varied application
designs.

You may of coarse treat GUIApplication as a bean and use the setX() and addX() methods to configure
the object.

Setting the Application Style
An overarching application style is defined via a constant in the constructor of the GUIApplication. This

style determines the general nature of the application as it regards the primary DataModel presentation in
the UI. The following constants are available.

Constant Comments
DEFAULT_APPLICATION_STYLE Without passing a constant, this is the default

style used. The effect is an SDI windowing
interface on all OS’.

Note that by SDI we are speaking of the style of
window management, not the number of
windows allowed. The
setAllowsMultipleOpens() method controls
whether one or many DataModel can be open
simultaneously. In the SDI style, each
DataModel is opened in its own window.

MDI_APPLICATION_STYLE Use this constant to set a “Multiple Document
Interface” (MDI) style for the application.

MDI is only recognized on some OS’. Hence on
Windows OS the UI will have a “main window”
and manage data windows in that frame. On
Gnome-Linux a tabbed interface (TDI) will be
used. On OS X, the option is ignored and a
normal SDI interface is used.

FORCE_WINDOWS_XP_TDI_
APPLICATION_STYLE

The MDI classic interface is default when
specifying the MDI_APPLICATION_STYLE on
Windows XP.

Some consider the Windows classic MDI
interface a dated interface paradigm. To others
it is a familiar part of life on Windows. For
those who would like the tabbed look instead,

COPYRIGHT © 2002 - 2011 J IDE SOFTWARE, INC. A LL R IGHTS RESERVED

41

Constant Comments
you can bitwise-or this option with the MDI
style to force Windows to use a TDI interface.

TDI_APPLICATION_STYLE Use this style to set a “Tabbed Document
Interface” (TDI) on all OS’.

This is a useful style particularly when using the
JIDE Docking Framework for a “tools” style
application. Otherwise, care should be used
when utilizing this style for general application
development. While it is acceptable on most
OS’, on some, like OS X, it is a strange paradigm
for general use.

SPLIT_APPLICATION_STYLE Combine this style to surround the primary
DataView workspace with SplitPanes on all four
sides.

This style is useful when UI content needs to be
static in the window, outside of the DataView
content.

This is a common style for email clients, catalog
type application that have navigation, or any
situation that needs to share the dynamic
content with some kind of static content.

Using Split Application Optional Style

Bitwise-or the SPLIT_APPLICATION_STYLE with any other style mentioned above to provide split panes
on the NORTH, SOUTH, EAST, and WEST of a primary DataView windows. To manage this capability, use
the SplitApplicationUI object. It is accessible using:

SplitApplicationUI splitUI = application.getApplicationUIManager().getSplitUI();

Use setSplitMode() to set the split configuration. Currently this supports:

• VERTICAL_SPLIT

• HORIZONTAL_SPLIT

Use setSplitVisible() to hide and show a split component. Use setDividerLocation() to set the divider
location. SplitApplicationUI uses sides to identify the location of the split component. The sides are
NORTH, SOUTH, EAST and WEST.

COPYRIGHT © 2002 - 2011 J IDE SOFTWARE, INC. A LL R IGHTS RESERVED

42

A WindowCustomizer can be used to manually add Swing Components to the splits, or a
DataViewHandler can be implemented, if the component is a DataView. To add components use
setUserComponent(window, userComponent, side).

getApplicationUIManager().getWindowsUI().
 addWindowCustomizer(new WindowCustomizer() {
 public void customizeWindow(ApplicationWindowsUI windowsUI,
 Container window) {
 windowsUI.getSplitUI().setUserComponent(window,
 myComponent, SplitApplicationUI.WEST);
 }
 public void disposingWindow(ApplicationWindowsUI windowsUI,
 Container window) {
 }
 });

Here is a DataViewHandler implementation of installing to the split UI:

public class SplitPaneHandler implements DataViewHandler {
 public void openDataView(Container window, DataView dataView,
 DataModel dataModel) {
 getApplication().getApplicationUIManager().getSplitUI()
 .setUserComponent(window,
 (Component)dataView.getViewComponent(), SplitApplicationUI.WEST);
 }

 public void closeDataView(Container window, DataView dataView) {
 getApplication().getApplicationUIManager().getSplitUI()
 .removeUserComponent(window.SplitApplicationUI.WEST);
 }

 public boolean isUseNewWindow(ApplicationWindowsUI windowsUI) {
 return false; // whatever is appropriate
 }
 }

FramedApplicationFeature

As an alternative to direct SplitApplicationUI interaction, JDAF provides a modular and clean MVC side-
framing facility via the FramedApplicationFeature. This feature requires the use of secondary DataModels
and allows any kind of DataView to be side-framed as well as supporting multiple DataViews on a given

COPYRIGHT © 2002 - 2011 J IDE SOFTWARE, INC. A LL R IGHTS RESERVED

43

side and a ToggleFrameAction to toggle visibility. The idea is to let you simply work with DataModels and
DataViews and let the feature manage the installation of framed DataViews.

For a DataModel's view to be routed to a side, one of the addFrameMapping() methods must be
called. There are various signatures of this method, but they all result in creating a FrameConfiguration.
The FrameConfiguration defines how the DataModel is introduced. The following example creates two
framed components called “Frame1” and “Frame2”.

public class MyApplication extends GUIApplication {
 public MyApplication() {

 // feature
 FramedApplicationFeature feature = new FramedApplicationFeature();
 feature.addFrameMapping(“Frame1”,
 SplitApplicatonUI.WEST,
 SecondaryBasicDataModel.class,
 DataView1.class);
 feature.addFrameMapping(“Frame2”,
 SplitApplicatonUI.WEST,
 SecondaryBasicDataModel.class,
 DataView2.class);
 addApplicationFeature(feature);
 ...
 }

 //…DataView implementations
}

When a window opens, the default behavior for the feature is to originate all DataModels matching a
FrameConfiguration and install their DataViews. You may change whether openData() or newData() is
used by calling setOriginationMode() to OPEN_DATA_ORIGINATION_MODE (default) or
NEW_DATA_ORIGINATION_MODE.

If you desire to not initially originate DataModels when the window opens, you may call the
FrameConfiguration setAutoInstall(false). Then call toggleFrame(frameName) with the frameName, or use
openData() or newData() manually. We provide the ToggleFrameAction to do such a thing for you from
menus and toolbars, and it maintains a checked state as well.

Should you need to define criteria for your mapped DataModel, call setCriteria() on the
FrameConfiguration. This criteria will be used to originate the DataModel. Be sure to pass this same
criteria in if you call openData(criteria) or newData(criteria) manually on the GUIApplication or via
OpenAction or NewAction calls, as this is the connection to the FrameConfiguration.

COPYRIGHT © 2002 - 2011 J IDE SOFTWARE, INC. A LL R IGHTS RESERVED

44

In this final example, we use a DockableConfiguration directly and set it up so that the feature will not
originate the DataModel on startup. The user execution of the ToggleFrameAction with cause it to show
and hide.

public class MyApplication extends GUIApplication {
 ...
 FramedApplicationFeature feature = new FramedApplicationFeature();
 newFrameConfiguration config = newFrameConfiguration();
 config.setFrameName("Welcome");
 config.setAutoInstall(false);
 config.setInitSide(SplitApplicationUI.WEST);
 config.setCriteria(“Hello World!”); // criteria ref
 config.setDataModelClass(SecondaryBasicDataModel.class);
 config.setDataViewClass(MyDataView.class);

 feature.addDockableMapping(config);
 ...
 getActionMap().put(“frame1”, new ToggleFrameAction(“Welcome”));

 // install in menu and toolbar
}

The DataModel and DataView mappings can be managed outside the feature as well, solely relying on
the criteria match to route the DataView to a side. Internally, a HashedDataModelFactory and
SemanticNameDataViewFactory are used by the feature. Just make sure the same criteria set in the
factory is set in the FrameConfiguration.

Another benefit of FramedApplicationFeature is that is uses JTabbedPanes to host multiple DataViews
on a given side. The JTabbedPane may be customized using a
FramedApplicatonFeature.TabbedPaneCustomizer:

feature.addTabbedPaneCustomizer(new FramedApplicatonFeature.TabbedPaneCustomizer() {
 public void customizeTabbedPane(Container tabbedPane, int side) {
 }
});

 The FramedApplicationFeature does not support tab-dragging or docking. This functionalitty
requires use of the JIDE Docking Framework. (You can use the DockingApplicationFeature to integrate the
framework into JDAF. The usage is similar to the FrameApplicatonFeature so your migration is be
minimal.)

COPYRIGHT © 2002 - 2011 J IDE SOFTWARE, INC. A LL R IGHTS RESERVED

45

Setting Fundamental GUIApplication Properties
There are some fundamental properties you can set to control the general behavior of your

application.

• Name – there is no set method for this as it is either set in the constructor or from the resources
file under the key {ClassName}.name

• setVersion() – Use to represent the application version. This is a simple string of the version. This
can be loaded from resources as well under the key {ClassName}.version

• setVendor() – Use to reflect the vendor of the application. This value is used in the data directory
path on some platforms and otherwise in the default about dialog. This can be loaded from
resources as well under the key {ClassName}.vendor

• ult about dialog implem – True by default. Use this option to define whether multiple DataModels
are allowed in your application. This option is true by default, allowing multiple
DataModels/DataViews. Set to false to allow only one DataModel at a time. If false, when a new
DataModel is introduced and one is pre-existing, the old one is disposed before the new one is
introduced. To force the DataViews to open in the same window call setReuseWindows(true) in
the ApplicationUIManager. Otherwise a new window is produced each time.

• setNewDataOnRun() – True by default, accept on Windows XP MDI. Use this option to force a new
DataModel to be opened initially. This can be set to false.

While this property is managed automatically depending on the OS, this setting to true ensures
that this behavior happens for all OS platforms.

NOTE: Keep in mind that this may keep a UI from opening. If the interface is in TDI style and/or is
using the JIDE Docking Framework JDAF will open the window. You may register a
WindowCustomizer to detect the window since no DataViewEvent will be generated.

• setUseThreadedOrigination() – If set to true, new DataModels are introduced on a separate
thread. This can be desirable if a UI needs to maintain its responsiveness while an expensive
DataModel instantiation is taking place.

• setExitApplicationOnLastDataView() –OS and application-style-dependant; normally true. Use this
setting on SDI application styles (SDIApplicationWindowsUI only) to determine whether the JVM
will terminate when the last window is closed. For example, if TDI style is used, and this option is
false, the last tab can be closed in the last window and the window/JVM remains open. Otherwise,
shutting the last tab shuts the window, which shutdown the JVM. Normally, the default setting of
this option is appropriate, but your requirements may be different.

• setAutoSaveSecondaryDataModels() – True by default; this option ensures that secondary
DataModels are saved if they are dirty, before a window closes. Otherwise, since they are out of

COPYRIGHT © 2002 - 2011 J IDE SOFTWARE, INC. A LL R IGHTS RESERVED

46

the primary Data cycle (menuing system, etc) you need to manually call saveData(DataModel) on
them. For example inside a DataViewListener dataSaved() event of the primary DataView.

• setAllowMultipleDataViewsPerModel() – False by default. Use this option to allow multiple
DataViews to be vended for the same DataModel.

JDAF selects the most appropriate application UI depending on the underlying OS. The benefit of this
feature is the intuitive, native feel it provides your application. Each OS has a unique
ApplicationUIManager subclass, allowing the OS to be treated as a first class citizen.

The downside is that this can make OS-dependant coding decisions less cut and dry. JDAF supports a
helper class called OSApplicationCustomizer that provides some resilience when making OS-based coding
decisions, as well as some practical benefit. OSApplicationCustomizer is designed to be used as an inner
class as an alternative to “if” blocks. It provides a customizeApplication() method for each
ApplicationUIManager implementation. By implementing the respective methods you allow JDAF to select
the most appropriate method at runtime.

new OSApplicationCustomizer() {
 public void customizeApplication(CrossPlatformApplicationUIManager ui) {
 // set Java Cross-Platform-Specific settings
 }
 public void customizeApplication(LinuxGnomeApplicationUIManager ui) {
 // set Linux-Specific settings
 }
 public void customizeApplication(MacOSXApplicationUIManager ui) {
 // set Mac OS X-Specific settings
 }
 public void customizeApplication(WindowXPApplicationUIManager ui){
 // set Window XP-Specific settings
 }
}.customize(application);

Notice how the OS-specific ApplicationUIManager is passed in as a typed object. As more OS platforms
are supported, the available customizeApplication() methods will be expanded.

Setting the Swing Look and Feel
This is a good time to discuss the relationship between Swing Look and Feel and JDAF Managed UI.

One of the goals of JDAF is to facilitate the best possible cross-platform OS integration. This is
accomplished using the combined effects of the system default Swing Look and Feels and our Managed
Application UI. In other words, these two technologies work together to facilitate a high-degree of

COPYRIGHT © 2002 - 2011 J IDE SOFTWARE, INC. A LL R IGHTS RESERVED

47

believability on a given platform. Be aware that changing the Look and Feel will not change the behavior of
the Application UI. So normally we recommend that on platforms where the System look and feel is
appropriate, go with it, as this will yield the greatest believability on a given OS.

However, there are always exceptions. For example, in the event that JDAF does not support a given
OS/platform, the Java Cross-Platform Application UI is used, which conforms to the Sun Java Look and Feel
Guidelines and hence uses the Metal Look and Feel. Changing the Look And Feel here may be desirable.

In the event that your project requires a consistent Look And Feel on all platforms, you can set the
"usecp" System property, and all platforms will use this Cross Platform Application UI.

Another clear example is Windows XP, where one encounters varying application UIs, even within
Microsoft's own product lines. (In the Vista Guidelines, Microsoft is encouraging more consistency). If you
are familiar with JIDE products then you are aware of our many Look and Feels available for Windows OS.
These Look and Feels give your application that polished look on Windows.

With this knowledge, if it is necessary to change the Look and Feel in JDAF you will need to set the
following option so that when the Managed UI is started it doesn’t override your settings:

application.getApplicationUIManager().setSetsLookAndFeel(false);

Note: This setting is turned off automatically if you define the "swing.defaultlaf" System property. We do not

recommend doing this unless you are branding your application to look the same on all platforms, in which case you
should also pass the option "usecp". This will force the Cross Platform Application UI to be used on all platforms.

Now we can set a special Look and Feel on Windows, for example:
if(SystemInfo.isWindowsXP()) {
 LookAndFeelFactory.setDefaultStyle(
 LookAndFeelFactory.OFFICE2003_STYLE);
 LookAndFeelFactory.installDefaultLookAndFeelAndExtension();
}

Make sure you do this before run() is called.

Additionally, part of the managed UI behavior is the population of standard icons for a given OS. So just
changing the look and feel may not complete the transformation you desire. In other cases, the standard
Look and Feel many be acceptable, but you wish to have a different set of icons. JDAF provides a class for
bulk swapping out the icons in an application; the IconTheme. This example swaps out the icons on
Windows XP to use the classic Windows icons:

IconTheme theme = new StandardIconTheme(
 StandardIconTheme.WINDOWS_MODERN_VARIATION);
theme.install(application);

COPYRIGHT © 2002 - 2011 J IDE SOFTWARE, INC. A LL R IGHTS RESERVED

48

This should be called in a pre-run scenario. To manage your own IconTheme we provide
MapIconTheme. But you certainly may implement your own or your own. IconTheme is discussed later in
this document.

Application Data Cycle
A GUIApplicationAction is installed for each controller method in the GUIApplication ActionMap.

These actions are respectively installed into the standard menus and toolbars when the UI starts. The
following table explains the action/method association.

Action DesktopApplication Method

NewAction newData(Object)

OpenAction openData(Object)

SaveAction saveData(DataModel)

ResetAction/
RevertAction

resetData(DataModel)

PrintAction printData(DataModel)

CloseAction closeData(DataModel)

These methods may be called programmatically as well.

Creating Different DataModels and DataViews

The NewAction and OpenAction classes are loaded by default in the File menu of the GUIApplication.
They call the GUIApplication controller methods newData(criteria) and openData(criteria), respectively.
These methods cooperate with the DataModelFactory objects to originate DataModels. The Actions have
a criteria property. The value of this property what is passed to the controller methods and hence to the
DataModelFactory implementations when the Action is invoked. (The resulting DataModel stores this
criterion in the criteria property. In the case of BasicDataModel it is forwarded to the data property as
well.)

Both NewAction and OpenAction allow for a queuedDataRequestKey to be set via
setDialogRequestKey(). If you cache a DialogRequest in the ApplicationDialogsUI with this key, it will be
invoked and the value from the DialogResponse will be used as the criteria for Action, and hence the
DataModel origination. For example; this code sets up an application where the criteria can be selected
from a combo box.

public class MyApplication extends GUIApplication {
 public MyApplication() {

COPYRIGHT © 2002 - 2011 J IDE SOFTWARE, INC. A LL R IGHTS RESERVED

49

 // queue a dialog request
 String[] criteria = new String[]{"Model1", "Model2","Model3"};
 StandardDialogRequest request = new StandardDialogRequest(
 new CriteriaPane(criteria), DialogRequest.OK_CANCEL_DIALOG);
 StandardDialogRequest.addQueuedDialog(application, "criteria", request);

 // reference in action
 ((NewAction)application.getActionMap().get(ActionKeys.NEW)).
 setDialogRequestKey("criteria");

 // use a hashed data factory to map the values to DataModels
 HashedDataModelFactory dataFactory = new HashedDataModelFactory();
 dataFactory.addDataModelMapping(criteria[0], Model1.class);
 dataFactory.addDataModelMapping(criteria[1], Model2.class);
 dataFactory.addDataModelMapping(criteria[2], Model3.class);
 addDataModelFactory(dataFactory);

 // use a mapped view factory to map the DataViews
 MappedDataViewFactory viewFactory = new MappedDataViewFactory();
 factory.addDataViewMapping(Model1.class, View1.class);
 factory.addDataViewMapping(Model2.class, View2.class);
 factory.addDataViewMapping(Model3.class, View3.class);
 addDataViewFactory(viewFactory);

 // run application
 run();
 }

 public class CriteriaPane extends DialogPane {
 JComboBox criteriaBox = new JComboBox();
 public CriteriaPane(String[] criteria) {
 criteriaBox.setModel(new DefaultComboBoxModel(criteria));
 }
 protected void initializeComponents(DialogRequest request) {
 add(criteriaBox);
 }
 protected void commitComponents(DialogResponse response) {
 response.setValue(criteriaBox.getSelectedItem());
 }
 }

COPYRIGHT © 2002 - 2011 J IDE SOFTWARE, INC. A LL R IGHTS RESERVED

50

 // DataModel implementations …
 // DataView implementations…
}

The remaining data cycle controller methods operate on the “focused” DataModel. SaveAction calls
saveData(focusedDataModel), ResetAction calls resetModel (focusedDataModel), etc. In the case of the
GUIApplication, the focused DataModel is defined as the primary DataModel whose associated DataView
is in the front-most window.

Managing Models
The simplest approach to managing data models is the use of the BasicDataModel to hold your data

object in its data property. By default, BasicDataModel sets the criteria used to create the model object
into the data property. Otherwise, it is somewhat like an adapter in that it provides empty
implementations of the data cycle methods from AbstractDataModel. You can use BasicDataModel as is,
or subclass it and implement one or more data methods. An alternate strategy would be to add a
DataModelListener to receive notifications of all DataModel lifecycles, and modify the model data
externally.

If file-based persistence of the data is desired, a FileDataModel should be used, via the
FileDataModelFactory. We recommend using the FileBasedApplication or the FileHandlingFeature if file
functionality is desired, since there are many other issues when working with Files in an application
besides the actual marshaling of data. (See “Making a Document-Centric Application” for more details.)

Subclassing AbstractDataModel is also appropriate in which case you may add properties and bean
methods to fully provide a model for your data.

To integrate your model into the application, you can set your class in the BasicDataModelFactory and
it will be instantiated. Just make sure there is a zero-argument constructor in your DataModel
implementation. If there is more than one type of data, use the HashedDataModelFactory or the
MappedDataModelFactory or multiple BasicDataModelFactorys. Otherwise, a custom DataModelFactory
implementation can be used so that application-specific logic can be employed to vend the appropriate
DataModel implementation.

Whatever DataModelFactory/DataModel implementation is chosen, be sure to balance it with an
appropriate DataViewFactory that will respond to the DataModel to vend a proper DataView.

COPYRIGHT © 2002 - 2011 J IDE SOFTWARE, INC. A LL R IGHTS RESERVED

51

Managing Views
Each DataModel produced will need at least one corresponding DataView implementation so that the

data can be represented in the UI. A DataViewFactory vends a DataView based on the DataModel.

If you desire more than one DataView per DataModel, you must set the
setAllowMultipleDataViewsPerModel() property and then provide more than one DataViewFactory that
returns a unique DataView instance for the same DataModel as other factories. In this scenario, the first
DataView of a primary DataModel, designated by a primary property of true, will be installed
automatically according to the application style. Any consecutive DataViews, or DataViews belonging to
secondary DataModels, designated by a primary property of false, will require a DataViewHandler, so that
you may install the DataView where you desire.

Provided that a DataViewHandler is installed, primary or secondary DataModels may also have
DataViews added to them during the application lifecycle. Use the ApplicationUIManager methods
openDataView() and closeDataView() to manage these auxiliary DataViews.

Keep in mind that DataViewFactories are still used to vend the DataView. So be sensitive to the
factories you have installed, particularly if they anonymously vend DataViews without a sensibility
concerning the primary state of the DataModel in the UI. For this reason the JDAF factories
provide an active property, so that certain factories may be disabled, for example to skip the re-
vending of a primary DataView.

GUIApplication uses Swing, your DataView implementation will need to facilitate a Swing component.
Therefore subclassing JPanel and implementing DataView is a logical strategy. While implementing
DataView is an application-specific option, using DataViewPane is an advantageous starting-point.
DataViewPane is a DataView implementation based on JPanel. Simply subclass and override the following
methods:

• public void initializeComponents();

• public void updateView(DataModel);

• public void updateModel(DataModel);

Use initializeComponents() to construct your UI.

Use updateView(DataModel) to move the data from the DataModel into the UI.

Use updateModel(DataModel) to move the information from your UI to the DataModel.

COPYRIGHT © 2002 - 2011 J IDE SOFTWARE, INC. A LL R IGHTS RESERVED

52

The application framework will call these methods as appropriate. Keep in mind that you may call the
updateX() methods at any time, as appropriate in your application. We recommend that you use the
EventManager to provide this behavior. Also, when calling updateView() be sure to use a EventContext
that fires the event on the event thread, such as the GUIEventContext.

It may be desired to decorate the sides of a DataView. JDAF will always host a DataView component as
the CENTER component inside a JPanel BorderLayout. Therefore it is always safe to use getParent(). We
recommend decorations be added either in a DataViewListener DATAVIEW_OPENING event or the
initializeComponents() method of DataViewPane, because at these times the DataView is installed. If
called prematurely, the component may not be yet installed and the container will be null.

ApplicationWindowsUI calls pack() automatically prior to showing the window, so you may wish to call
setPreferredSize() on your DataView component if the size is not acceptable.

Alternately, you can set all DataViews to a given size by calling:
application.getApplicationUIManager().getWindowsUI().setPreferredWindowSize(someSize);

DataViewPane provides other useful methods. You can use getApplication() to access the
GUIApplication. Use makeDirty() to signify that the DataModel should be stored. You can use
postUndoableEdit() to add an UndoableEdit to the UndoManager of the corresponding DataModel. Call
installEditables() to register components with the edit menu. Call setDefaultFocusComponent() to set the
component that should receive the focus event when the DataView opens.

DataViewPane is also a PrintSource. If you wish to provide printing, override the getPageable()
method. To advertise that printing is available conditionally, you may additionally implement isPrintable().

Whatever DataView implementation is used, a DataViewFactory must be added that will instantiate a
given DataView based on the DataModel. If there is only one DataView type in your application, you can
use the BasicDataViewFactory and simply provide your Class. BasicDataViewFactory will also create a
default DataViewPane, in which you can use a DataViewListener dataViewOpening() event to populate it.
In any case, make sure there is a zero-argument constructor in your DataView class. Alternatively, a review
of the GUIApplication constructors shows that your DataView class can simply be passed in as a
constructor argument.

If there is more than one type of DataModel, you can use the MappedDataViewFactory which allows
you to map multiple DataModel classes to DataView classes. Or you may provide a custom
DataViewFactory implementation or provide multiple DataViewFactory implementations that respond
appropriately to the possible DataModel types produced by the DataModelFactory implementations.

If the view is dependent on a file type, you should use the FileDataViewFactory. This will let you
associate a FileFormat with the DataView class, similar to using a FileDataModelFactory. In fact both
implementations should be used together and agree on FileFormats.

COPYRIGHT © 2002 - 2011 J IDE SOFTWARE, INC. A LL R IGHTS RESERVED

53

DataViewListener

GUIApplication supports a DataViewListener for monitoring the presentation of DataViews. This is
particularly important since the windowing of the application is managed automatically, and the details of
how windows are managed may change from OS to OS. DataModelListener provides a consistent interface
no matter how the windowing system is managed. The following events are fired:

• DATA_VIEW_OPENING
• DATA_VIEW_OPENED
• DATA_VIEW_ACTIVATED
• DATA_VIEW_DEACTIVATED
• DATA_VIEW_CLOSING
• DATA_VIEW_CLOSED
• DATA_VIEW_MINIMIZED
• DATA_VIEW_MAXIMIZED
• DATA_VIEW_NORMALIZED

These events provide a similar behavior to AWT/Swing window events. A DataViewAdapter is
available as a convenience implementation.

Secondary and Auxiliary DataViews

JDAF manages all primary DataViews and installs them in a prominent position accoding to the
application UI style. However, if a DataView’s DataModel is secondary (isPrimary() == false) or the
DataView is not the first DataView produced in a multi-view DataViewFactory scenario, then it is up to the
application developer to install the DataView. This is accomplished by installing a DataViewHandler into
the ApplicationUIManager like so:

application.getApplicationUIManager().addDataViewHandler(
 DataModel.class, new MyDataViewHandler());

A DataViewHandler is installed by associating it either with your DataModel implementation class or
your DataView implementation class. If the handler is to be used for all views of a given DataModel
implementation, use that DataModel class. If the handler is to be used for a particular DataView, use that
DataView class. DataViewHandler has three methods:

• openDataView(Container, DataView, DataModel)

• closeDataView(Container, DataView)

• isUseNewWindow(ApplicationWindowsUI)

COPYRIGHT © 2002 - 2011 J IDE SOFTWARE, INC. A LL R IGHTS RESERVED

54

The openDataView() and closeDataView() are called to install and uninstall the DataView. The
isUseNewWindow() is used to determine whether the DataView needs to open a new window or join the
front window. The container is the window to install the DataView in.

Consider the following example, which uses the SPLIT_APPLICATION_UI and a DataViewHandler that
installs a navigation view into the left side of the primary DataView window.

public class NavApp extends GUIApplication {
 public NavApp () {
 super(SPLIT_APPLICATION_STYLE);
 addDataModelFactory(new BasicDataModelFactory(
 SecondaryBasicDataModel.class));
 addDataViewFactory(new BasicDataViewFactory(TreePane.class));

 // set window size, since there is no primary DataView
 ApplicationWindowsUI windowsUI =
 getApplicationUIManager().getWindowsUI();
 windowsUI.setPreferredWindowSize(windowsUI.
 getPreferredMaximumWindowSize());
 // add DataViewHandler
 getApplicationUIManager().addDataViewHandler(
 SecondaryBasicDataModel.class,
 new NavViewHandler());

}

// implement DataViewHandler
class NavViewHandler implements DataViewHandler {
 public void openDataView(Container window, DataView dataView,
 DataModel dataModel) {
 // get SplitApplicationUI and set component on left
 SplitApplicationUI splitUI = getApplicationUIManager().getSplitUI();
 splitUI.setUserComponent(window,
 (Component)dataView.getViewComponent(),
 SplitApplicationUI.WEST);
 splitUI.setDividerLocation(window, SplitApplicationUI.WEST, 100);
 }

 public void closeDataView(Container window, DataView dataView) {
 SplitApplicationUI splitUI = getApplicationUIManager().getSplitUI();
 splitUI.removeUserComponent(window, SplitApplicationUI.WEST);
 }

COPYRIGHT © 2002 - 2011 J IDE SOFTWARE, INC. A LL R IGHTS RESERVED

55

 public boolean isUseNewWindow(ApplicationWindowsUI windowsUI) {
 return true; // because this is initial DataView on startup
 }
 }

 public static class NavView extends DataViewPane {
 JTree tree = new JTree();
 protected void initializeComponents() {
 setPreferredSize(new Dimension(100, 100));
 add(new JScrollPane(tree));
 }
 }

 public static void main(String[] args) {
 new NavApp().run(args);
 }
}

In this situation isUseNewWindow() is true, because our only DataModelFactory will vend a
SecondaryDataModel, which would otherwise be ignored by our UI because of its non-primary status.
Generally this should be false to integrate the DataModel into the existing UI.

Window Management
GUIApplication automatically manages all windowing details concerning the presentation of

DataViews. This may seem odd at first, but consider web development. Historically, part of the webs
proliferation can be attributed to the fact that the page developer was only concerned about content, not
the web browser window/application. We hope you will find it as liberating to only have to develop views
for your data, and not have to worry about windowing details. Furthermore, there is, interestingly enough,
a sufficient amount of OS-specific behavior concerning windows that is managed for you via this
mechanism.

WindowCustomizer

It is generally unnecessary to work directly with windows. Use a DataViewListener to capture window
behavior. This interface abstracts the multiple ways in which DataViews may be hosted in an application
and is most guidelines compliant. However, there are always exceptions, such as making keystroke
bindings or other behavioral changes to a normal window. For these cases we provide the
WindowCustomizer.

COPYRIGHT © 2002 - 2011 J IDE SOFTWARE, INC. A LL R IGHTS RESERVED

56

We do not recommend using a WindowCustomizer for setting a window size. Window size is
handled by the framework as a result of DataView contents. If you need to set an explicit size for
your windows, use the pre-run option setPreferredWindowSize() in the ApplicationWindowsUI
object of the ApplicationUIManager. If for some reason you need to invalidate the window, use the
ApplicationWindowsUI.sizeWindow() method for compliant behavior.

You may register a WindowCustomizer with the ApplicationWindowUI object of the
ApplicationUIManager. WindowCustomizer has two methods; one for when the window is about to show
and one for when it is about to be disposed.

• customizeWindow(ApplicationWindowsIU, Container)

• disposingWindow(ApplicationWindowsIU, Container)

JDAF exposes windows as a java.awt.Container due to the various possible implementations of the
windowing architecture. ApplicationWindowsUI can be used to access and perform functions on the
window object in the windowing system in a cross-platform compliant manner.

ApplicationWindowsUI

The ApplicationUIManager uses an OS-specific ApplicationWindowsUI class to manage the display of
your DataView component automatically, using an appropriate document-window style for the OS and
Application Style. The subclass tree is first split by two abstract subclasses; SDIApplicationWindowsUI and
MDIApplicationWindowsIU. These classes will contain methods specific to these windowing styles. In the
event of a TDI style application, the SDIApplicationWindowsUI hosts a TabbedApplicationUI which
facilitates hosting DataViews in tabs within each SDI window. In the event of a Split style application, the
SDIApplicationWindowsUI hosts a SplitApplicationUI which facilitates installing components in a split pane
on the any of the NORTH, SOUTH, EAST, and WEST sides of each SDI window. Please see the javadoc for
more details.

Note that ApplicationWindowsUI treats all window classes as java.awt.Container classes, so casting
may be involved if you desire to work with a single window instance directly. To access the window of a
DataView outside the DataViewEvent, you would use the getDataViewWindow(DataView) method. You
can use the ApplicationUIManager methods isSDI() or isMDI() to determine whether to cast to a JFrame or
a JInternalFrame, respectively. However there are many window functions in the ApplicationWindowsUI
which accept the Container as an argument anyway.

COPYRIGHT © 2002 - 2011 J IDE SOFTWARE, INC. A LL R IGHTS RESERVED

57

Window Sizing

JDAF will manage sizing characteristics of the data windows automatically based on DataView content
size. There are platform neuances, such as cascading and “always on screen” policies and multiple monitor
policies that make this desireable. However, sometimes a DataViews content is not determinate, or you
may simply wish to set the initial size of your windows yourself. In these cases use the
ApplicationWindowsUI method setPreferredWindowSize(). If you are using the JIDE Docking Framework
and you are allowing JDAF to manage the layout persistence, JDAF will only respect your window size
setting if there is no layout data saved yet. From then on, the users sizing is observed. (The layout files are
stored in the default data directory returned from DesktopApplication method getDataDirectory(), which
is a platform dependant path.)

Alternately, you can instruct the ApplicationWindowsUI to initially maximize windows on startup using
the setMaximizeWindows(true). We recommend this be done selectively in an OSApplicationCustomizer.
On some platforms a maximized window is acceptable, such as Windows XP, but on others, such as Mac
OS X with a 32” Cinema Display, it may be disconcerting to cover the entire screen.

The ApplicationWindowsUI method getPreferredMaximumSize() method will return an appropriate
screen size for windows. This can be used along with the setPreferredWindowSize() to set a large screen
size.

Window Titling Logic

The ApplicationWindowsUI class handles the way titles are presented in GUI to mimic the semantics
used on different platforms. Normally this behavior is sufficient. Titling is modeled on the OS Guidelines
or, in their silence on the subject, the observation of popular applications on the given platform. However,
it may be necessary to modify the behavior of the display characteristics.

While it may seem that setting a window title is a trivial issue, it can get quite complex when you
consider the compound affects of multiple windows, various application styles, various OS guidelines, and
various DataModel types. For example, does the title display the same when in a windowed interface as it
does when in a tabbed interface? Since a tabbed interface is contained in a window, how does the title
appear there? How about in the Main window of an MDI interface? Or all these simultaneously! How does
the title display when there is no data? Does the title include the application name? If so, does it come
before or after the document name? Furthermore, on some platforms when the document is dirty, this is
denoted in the title. As you can see this is no trivial problem.

To address window titling we use a WindowTitleFortmatter object. This can be accessed from the
ApplicationWindowsUI object in the ApplicationUIManager. WindowTitleFormatter is an interface that
supplies three methods:

• getMainWindowTitle(GUIApplication, DataModel)

• getDataWindowTitle(GUIApplication, DataModel)

• getDataTabTitle(GUIApplication, DataModel)

COPYRIGHT © 2002 - 2011 J IDE SOFTWARE, INC. A LL R IGHTS RESERVED

58

These methods are called from the UI when the title of a UI element needs to be updated. So at least
we have the three primary situations covered (MDI, SDI, TDI).

To facilitate the myriad of titling challenges with multiple OS and for multiple data model types, we
use the DefaultWindowTitleFormatter. This WindowTitleFormatter implementation uses ObjectFormats to
manage titling semantics. ObjectFormat is similar to a MessageFormat, but interprets user defined tokens
(See ObjectFormat). There is an ObjectFormat and title pattern for each of the three titling requirements
in the WindowTitleFormatter interface. To customize titling behavior, while still respecting OS guidelines,
one can simply modify one or more of the title patterns.

But if you introduce a new DataModel type, or have mixed types, you have the option of customizing
the pattern tokens interpretation by DataModel class, because ObjectFormats are mapped based on the
DataModel class. The class mapping is polymorphic.

By default the AbstractDataModel class is registered with ObjectFormats so that all subclasses pick it
up the title automatically. To designate a specific ObjectFormat to a specific DataModel class, create and
configure the ObjectFormat, and add it to the DefaultWindowTitleFormatter using one of the
addXFormat(Class, objectFormat) methods. The ObjectFormat instance must support the respective title
pattern, because the pattern is OS dependant and shared across all ObjectFormats.

Currently the tokens supported in the window titling pattern are:

• ${APPLICATION_NAME}

• ${DATA_MODEL_NAME}

• ${DATA_MODEL_INDEX} (KDE-only)

Token interpretation is facilitated by ObjectFormatToken objects. Each ObjectFormatToken is
associated with a specific token string. These objects are supplied to an ObjectFormat in order to
substitute text against the pattern. The ApplicationNameToken and DataModelNameToken classes are
used to perform the default token interpretation of the above tokens. To create a custom token
interpreter, subclass one of these or the ObjectFormatToken class itself. See the javadoc for more
information.

Alternately you can simply set a new pattern into an existing ObjectFormats using
setDataWindowPattern(), setTabDataPattern(), and setMainWindowPattern().

Working with Actions
The DesktopApplication supports an ActionMap for providing a centralized place for application

functionality.

COPYRIGHT © 2002 - 2011 J IDE SOFTWARE, INC. A LL R IGHTS RESERVED

59

Actions should be added before the application runs.

GUIApplication is pre-configured with default Actions that provide basic application functionality.
These actions are integrated into the Managed UI at startup during run(). Hence, you may remove or
replace any other these actions prior to a call to run(). These standard Actions can be retrieved using the
constants in the ActionKeys interface. Actions can be executed programmatically from the application
using executeAction(actionKey), but normally they are installed into menus and toolbars (see
MenuBarCustomizer and ToolBarCustomizer).

ApplicationAction contains a reference to the DesktopApplication once installed into the applications
ActionMap. JDAF provides an ApplicationAction implementation designed for GUI applications called
GUIApplicationAction. GUIApplicationAction has some enhancements over ApplicationAction, such as
access to the GUIApplication instance, threaded execution, and support for large icons with the
LARGE_ICON property constant.

When subclassing GUIApplicationAction you should consider overriding actionPerformedDetatched()
instead of actionPerformed(). This threaded version provides better perceived performance because it
allows the UI to respond immediately. The code is still executed on the event thread, it is just re-queued
to execute after the UI has been restored, and making menus and toolbar buttons snap back into place
before executing the Action.

When implementing an Action, it may be better to extend off one of these GUIApplicationAction
subclasses instead, if their behavior is useful:

• FocusTrackingAction: This GUIApplicationAction always keeps a reference to the currently focused
Component. This can be used when the current focused Component is needed for the action
behavior.

• ActiveStateAction: This GUIApplicationAction will only be enabled when there is an open and non-
minimized DataView-window available. It is useful for actions that require a DataModel/DataView
to operate on.

• DirtyStateAction: This Action is only enabled when the focused DataModel is dirty.

A few GUIApplicationActions are reusable:

• ComponentAction: This FocusTrackingAction subclass is used primarily for Edit menu items. It
delegates to the Action in the focused Component’s ActionMap. You provide the actionKey that is
used to look-up the Action in the Component’s ActionMap. That Action is executed instead. The
enable states are also synchronized.

COPYRIGHT © 2002 - 2011 J IDE SOFTWARE, INC. A LL R IGHTS RESERVED

60

• DelegatingAction: This GUIApplicationAction allows you implement your actionPerformed()
method elsewhere, such as in a GUIApplication subclass or a dedicated class, under a synonym.
This can reduce the number of Action classes to define.

Pre-Installed Actions

GUIApplication installs a collection of fully-functioning Actions in GUIApplication by default. These
Actions are loaded into the GUIApplication’s ActionMap, and integrated into the menus and toolbars of
the user interface. All GUIApplicationActions have localized names, mnemonics, icons and accelerators so
they appear and function in an OS-specific manner.

The following listing details what default GUIApplicationActions are automatically installed.

OS: C=Cross Platform, G=Gnome-Linux, K=KDE-Linux, M=Mac OS X, W=Windows XP

Action Purpose OS

AboutAction Opens the about dialog C,G,K,M,W,

ActivateAllWindowsAction Brings all windows to the front/cascades on
option-toggle

M

ActivateWindowAction Brings the specified window to the front C,G,K,M,W

ArrangeWindowsAction Performs OS-specific window arrangement W

CascadeWindowsAction Arranges windows so that their top-left
corners are positioned next to one another

C,M*,W

CloseAction Disposes the focused DataModel C,G,K,M,W

CloseAllAction Disposes all open DataModels G

CopyAction Executes the “copy” or “copy-to-clipboard”
Action of the currently focused Component**

C,G,K,M,W

CutAction Executes the “cut” or “cut-to-clipboard”
Action of the currently focused Component**

C,G,K,M,W

DeleteAction Executes the “delete” or “delete-next” Action
of the currently focused Component**

C,G,K,M,W

ExitAction Exits the DesktopApplication C,G,K,M,W

HelpAction Invokes the DesktopApplication
HelpSource***

C,G,K,M,W

OpenAction Calls DesktopApplication.openData() with user
defined criteria, on the focused

C,G,K,M,W

COPYRIGHT © 2002 - 2011 J IDE SOFTWARE, INC. A LL R IGHTS RESERVED

61

Action Purpose OS

DataModel****

MinimizeWindowAction Minimize the front window/minimize all
windows on option-toggle

M

NewAction Calls DesktopApplication.newData() with user
defined criteria, on the focused
DataModel****

C,G,K,M,W

NextAction Cycles to the next window or tab in the
application

K

PageSetupAction Invokes the page setup dialog for the
Printer***

C,G,K,M,W

PasteAction Executes the “paste” or “paste-to-clipboard”
Action of the currently focused Component**

C,G,K,M,W

PreferencesAction Invokes a PreferencesDialogRequest, as
defined in the ApplicationDialogUI***

C,G,K,M,W

PreviousAction Cycles to the previous window or tab in the
application

K

PrintAction Invokes printing of the focused
DataModel/DataView****

C,G,K,M,W

RedoAction Invokes redo() on the UndoManager of the
focused DataModel

C,G,K,M,W

ResetAction Calls DesktopApplication.resetData() on the
focused DataModel****

C,G,K,M,W

SelectAllAction Executes the “selectAll” or “select-all” Action
of the currently focused Component**

C,G,K,M,W

SaveAction Calls DesktopApplication.saveData() on the
focused DataModel.

C,G,K,M,W

SaveAllAction Calls DesktopApplication.saveData() on all the
dirty DataModels in the application.

G

ToggleWindowSizeAction Toggles window size between the initial size
and last user defined size. (Mac OS X “Zoom”
command)

M

UndoAction Invokes undo() on the UndoManager of the C,M,W

COPYRIGHT © 2002 - 2011 J IDE SOFTWARE, INC. A LL R IGHTS RESERVED

62

Action Purpose OS

focused DataModel

* On OS X, cascade is a side-effect of guidelines-recommended option-toggling the “Window->Bring to Front”
menu item (ActivateAllWindowsAction), which results in an “Arrange in Front” menu item, which calls the
cascade functionality.

** See ComponentAction.

*** Some actions are conditionally installed based on the application configuration. Examples are printing and
help Actions which will not be installed into the UI if Printer and HelpSource are not available when the
application is run.

**** FileBasedApplication/FileHandlingFeature installs alternate NewFileAction and OpenFileAction actions, as
well as additional actions and behavior, specifically designed for File-handling requirements.

Some GUIApplicationActions of note have configuration capability to further define application
behavior.

• NewAction and OpenAction can have their criteria set via setCriteria() which defines what is
passed to the application via newData(criteria) and openData(criteria), and to the respective
DataModelFactory. A dialog can be used to set the criteria of the Action by queuing the
DialogRequest in the ApplicationDialogsUI, and then setting this dialog key with
setDialogRequestKey(). The criteria is pulled from the resulting DialogResponse.

• HelpAction can have its topic property set via setHelpTopic() to control what is passed to the
HelpService from a menu item. Note that this value is overridden if the primary DataView
component has the client property HelpSource.HELP_HINT_PROPERTY_NAME set with a topic.

The managed UI ensures that the Actions are installed in the correct places in the File, Edit, Window,
and Help menus, according the OS-guidelines. One caveat is that the File menu in GUIApplication is the
same for all OS. It simply provides access to the primary data methods of the DesktopApplication.
However, by installing the FileHandlingFeature, or using the FileBasedApplication, which installs the
FileHandlingFeature, the File menu will be populated according to OS-guidelines, which tend to promote a
file-centric application.

Finally, unless otherwise noted, some Actions may be available in the ActionMap that are not installed
into the UI. These can be used at the discretion of the developer.

User Actions

The default Actions are available immediately after GUIApplication construction. In general,
developers should install application-specific actions before run() is called. When run() is called, the UI will
ultimately startup, which includes building the menus and toolbars via the actions.

COPYRIGHT © 2002 - 2011 J IDE SOFTWARE, INC. A LL R IGHTS RESERVED

63

The default Actions can be replaced using their ActionKey constants. By using these keys, the replaced
Action will assume the OS-specific properties of the Action. Other keys will cause your own resource
bundles to be used if they are available, according to the ActionResourcesBinding rules.

The GUIApplicationActionMap automatically uses a ActionResourcesBinding to bind resources to

added Actions via their property keys, as defined in the Action interface. The resource file should be in the
same file location as the Action class. Properties are recognized in a resource file by the following pattern:

[actionKey].Action.[propertyName]

As an example; for an Action keyed under “recalcTotals”, the properties file could have a value:

recalcTotals.Action.Name=Recalculate Totals

The “Name” portion of the entry is equivalent to the property Action.NAME, so it will be loaded into

that property of the Action. By default all the properties defined in the Action interface will attempt to
load. You need only supply the values desired for localization.

 Note: in order for the Action.SMALL_ICON and Action.ACCELERATOR_KEY to be loaded, that

ObjectConverters should be configured for the Resources object where the Actions resources will be
loaded. See the “Working with Icons” section.

Finally, if Actions are OS-specific, you can add them using an OSApplicationCustomizer to ensure that

they are in sync with the Application UI. Or if using resource files, you can use the OS variant an define
Action properties in different files.

Auto Installation of Actions into GUI

A powerful ApplicationFeature called the AutoInstallActionsFeature may be added to the
GUIApplication to install Actions into the GUI automatically. This feature uses special properties in your
Actions and leverages JDAF menu and toolbar infrastructures to facilitate the installation of Actions. This
includes the automatic creation of menus and toolbars as well as integration in the standard ones, largely
removing the need to use MenuBarCustomizers or ToolBarCustomizers to write manual menu or toolbar
code.

To use, simply add an instance of AutoInstallActionsFeature to your GUIApplication.

....
application.addApplicationFeature(new AutoInstallActionsFeature());

Next, for each of your Actions set some special properties to tell the feature where you want your
action to appear in the UI. The special property names are defined in the AutoInstallActionsFeature.

COPYRIGHT © 2002 - 2011 J IDE SOFTWARE, INC. A LL R IGHTS RESERVED

64

...
Action action = new GUIApplicationAction(“Export”) {
 public void actionPerformedDetached() {...}
};
action.putValue(AutoInstallActionsFeature.MENU_ID, MenuConstants.FILE_MENU);
action.putValue(AutoInstallActionsFeature.TOOLBAR_ID,
 app.getApplicationUIManager().getToolBarsUI().getStandardToolBarName());
app.getActionMap().put(“export”, action);

This “Export” Action will be installed into the “File” menu and into the “Standard” toolbar. Either of
these properties are the minimum needed for the Action to be installed. If you where to define your own
menu name or toolbar name values into the respective properties, the feature would create the
respective menu or toolbar and add the Action to it.

You can specify the exact positioning of the Action relative to another using the BEFORE_ACTION and
AFTER_ACTION properties. For example, we would add the line:

action.putValue(AutoInstallActionsFeature.AFTER_ACTION, ActionKeys.SAVE);

 to cause this Action will be installed after to the “Save” command.

When there is more than one Action being installed, it is important to define the NATURAL_ORDER
property and set an Integer that is relative to the other Actions being installed.

Action action = new GUIApplicationAction(“Export”) {
 public void actionPerformedDetached() {...}
};
action.putValue(AutoInstallActionsFeature.MENU_ID, MenuConstants.FILE_MENU);
action.putValue(AutoInstallActionsFeature.NATURAL_ORDER, new Integer(2)); // second
app.getActionMap().put(“export”, action);

action = new GUIApplicationAction(“Import”) {
 public void actionPerformedDetached() {...}
};
action.putValue(AutoInstallActionsFeature.MENU_ID, MenuConstants.FILE_MENU);
action.putValue(AutoInstallActionsFeature.NATURAL_ORDER, new Integer(1)); // first
app.getActionMap().put(“import”, action);

Here, the “Import” command will appear before the “Export” command due to the NATURAL_ORDER
setting. Without this property we are at the mercy of the order returned by the underlying storage
mechanism of the ActionMap.

COPYRIGHT © 2002 - 2011 J IDE SOFTWARE, INC. A LL R IGHTS RESERVED

65

When working with menus, the property MENU_GROUPING_ID allows an Action to be appended to a
certain MenuGroup in the standard menus. This property will also create these groupings either in a
standard menu or your own menu if they don't exist. This option can be used in leu of, or along with, the
BEFORE_ACTION and AFTER_ACTION properties. For example, here we define the Action to be appended
in the “Undo” group of the “Edit” menu.

Action action = new GUIApplicationAction(“Undo History”) {
 public void actionPerformedDetached() {...}
};
action.putValue(AutoInstallActionsFeature.MENU_ID, MenuConstants.EDIT_MENU);
action.putValue(AutoInstallActionsFeature.MENU_GROUPING_ID,
 MenuConstants.EDIT_UNDO_GROUP_ID);
app.getActionMap().put(“undoHistory”, action);

The section “MenuGroupings” describes more about JDAF menu infrastructure. The
ApplicationMenuBarsUI can be used to programmatically discover the resulting menu structures.

Because the Action installation is property-based and because properties can be bound from resource
files, it is then possible to completely configure menu and toolbars using resource files. This is done by
defining properties in the same way other Action properties are defined. For example; our cumulative
“Import/Export/Undo History” examples could be defined as:

export.Action.Name=Export
export.Action.MenuID=fileMenu

 export.Action.NaturalOrder=2
import.Action.Name=Import
import.Action.MenuID=fileMenu

 import.Action.NaturalOrder=1
 undoHistory.Action.MenuID=editMenu
 undoHistory.Action.MenuGroupingID=editMenu.undo

 Be sure to check to javadoc for the correct constant values. Note that if a SELECTED_KEY boolean
property is added to the Action, a “toggle” version of a menu item or toolbar button will be used.

One other important caveat for loading these special properties is that the ActionResourceBinding
needs to be aware of them. By default it is only aware of the default Action properties and our own
LARGE_ICON. Since GUIApplcationAction is a Resourceful object, it can return its own ResourceBinding
implementation. This is where you should return an ActionResourceBinding with all of the properties
added. However, for your convenience, the AutoInstallActionFeature provides a GUIApplicationAction
called AutoInstallAction, which implements this detail:

Action action = new AutoInstallActionsFeature.AutoInstallAction() {
 public void actionPerformedDetached() {...}
};
app.getActionMap().put(“import”, action);
Action action = new AutoInstallActionsFeature.AutoInstallAction() {

COPYRIGHT © 2002 - 2011 J IDE SOFTWARE, INC. A LL R IGHTS RESERVED

66

 public void actionPerformedDetached() {...}
};
app.getActionMap().put(“export”, action);
Action action = new AutoInstallActionsFeature.AutoInstallAction() {
 public void actionPerformedDetached() {...}
};
app.getActionMap().put(“undoHistory”, action);

AutoInstallActionsFeature currently does not support sub-menu definition or Toggle menu items or
buttons.

Working with Icons
GUIApplication provides a default Application icon for each platform. To replace this icon, call the

setSmallIcon() and setLargeIcon() methods of the ApplicationUIManager. These icons are shown in
window titles and dialogs, and the default about dialog implementation6.

Icons are also set in the default Actions when they are added to the GUIApplicationActionMap. To
override these icons, simply set the Action properties as you normally would, or try using an IconTheme
(discussed in the next section).

Icons can be loaded from resource bundles using the Resources API. To facilitate this, an IconConverter
should be registered in the ObjectConverterManager. IconConverter allows for a root Class or resource
path to be defined, which tells it where the icon resources can be found. Then icons can be loaded from
resources like so:

ImageIcon icon = (ImageIcon)Resources.getObject(MyAction.class, “pencil”, ImageIcon.class);

Icon loading is particularly important when binding resources to Actions. The IconConverter should be
registered with the ConverterContext of the Resources object where the resource bundle is located, and
the root of the IconConverter should be set to a location where the icon files reside, which may not
necessarily be in same package. Note that when the IconConverter root is set to null, the system class
paths are searched. Actions also require a converter to create KeyStrokes from Strings. JDAF provides a
KeyStrokeConverter for this task. A static helper method is available that makes installing these resource
converters a single step. Use the static ActionResourcesBinding method installActionConverter() once for
each package where there are Actions.

6 On Mac OS X, the only way to get the application name and icon to show in the dock, is to provide parameters in the JVM
command line via the –Xdock:name="App Name" and -Xdock:icon="app.icns". The Jar Bundler will do this for you. Also, some
installers take care of this as well. During development however, theses JVM properties can be set for convenience. To convert a
.jpeg or .png file to an Apple .icns you can use ‘System>Developer>Applications->Utilities->Icon Composer’ application that comes
with the Apple developer tools.

COPYRIGHT © 2002 - 2011 J IDE SOFTWARE, INC. A LL R IGHTS RESERVED

67

IconThemes

JDAF provides a helper class called IconTheme that facilitates the configuring of icons in a single place
for a GUIApplication. To use an IconTheme simply instantiate it and call the install(GUIApplication)
method.

IconTheme requires four methods:

• getLargeApplicationIcon()
• getSmallApplicationIcon()
• getLargeActionIcon(actionKey)
• getSmallActionIcon(actionkey)

You can use any method to return the icons; Resources, IconsFactory, or traditional methods of
loading ImageIcons. Each geXIcon() method is passed an iconStyle. Currently only one style
NORMAL_ICON_STYLE is ever supplied. In the future, it may become desirable to access different versions
of the icon, perhaps based on color depth or effect.

By default all icons are replaced when install() is called. If an icon method returns null, the icon is
cleared in the destination. This can be changed by setting the passive property, in which case icons will not
be replaced/cleared when an icon method returns a null value. This feature makes it straightforward to
replace just a few icons. Passive is off by default. (Application icon setting is always passive.)

IconTheme supports a variation flag in the event that a given theme wishes to support variations.
Default setting is the value NO_VARIATION.

Icon theme is abstract but we provide the following implementations:

• MapIconTheme – This IconTheme class is based on Maps. To use, simply load your icons into the
theme declaratively before installing.

• StandardIconTheme – This theme is only useful if there is a need to restore the original OS-specific
icons. It does however provide a special variation for Windows OS; the
WINDOWS_MODERN_VARIATION. Normally, the Windows classic icons are shown, this variable
allows a more modern set of icons to be installed that may better match on of the special Jide
Look and Feels.

• IconSetIconTheme – This IconTheme interfaces with JIDE stock Icon libraries by using an internal
JIDE Commons IconSetManager. It will automatically match the running OS to the installed icons
library and otherwise ignore unavailable conditions.

COPYRIGHT © 2002 - 2011 J IDE SOFTWARE, INC. A LL R IGHTS RESERVED

68

Working with Dialogs
In a normal desktop application, dialogs tend to be a scattered and disorganized portion of the

application code. (Do you know where your dialogs are?). In large applications, this unstructured and
largely non-object-oriented aspect of messaging can create maintenance problems.

GUIApplication provides a facility for centralizing and formalizing dialogs in a way that respects OS-
guidelines and provides consistent, maintainable, and reusable presentations of dialogs. This is facilitated
by the ApplicationDialogsUI object, which is a member of the currently installed ApplicationUIManager.

Instead of working with the JDialog directly, or clients of JDialog, such as JOptionPane or JFileChooser,
you should use one of the DialogRequest classes. To show a dialog, the DialogRequest is presented to the
ApplicationDialogsUI using showDialog(request). The ApplicationDialogsUI presents the request to the
user in an OS-specific manner and returns with a DialogResponse. The DialogResponse object provides a
response code and an optional value, which is usually the button clicked, but could be any value, such as a
File from a file dialog.

DialogRequests can also be queued with a key, for future display of pre-configured dialogs. Use
addQueuedDialog(application, key, dialogRequest) to add a DialogRequest. Then to execute the dialog
later, use showQueuedDialog (application, key).

JDAF currently facilitates the following types of DialogRequests:

• MessageDialogRequest - Show messages and confirmations
• FileDialogRequest - Presents file negotiations
• StandardDialogRequest - Hosts user components
• ProgressDialogRequest – Presents a progress dialog. (used with DialogBlock in the Activity

framework)
• PreferencesDialogRequest – Use to present a preferences/options dialog
• CompatibleDialogRequest - Allows legacy JDialogs to be presented as is

Using DialogRequests

There are multiple patterns for sending a DialogRequest. But basically the most common way to send
a dialog request is to use the static usability methods as this creates the most concise code. We will use a
MessageDialogRequest as an example to illustrate the various use cases:

• Use the high-level static usability methods in a given DialogRequest class:

MessageDialogRequest.showConfirmDialog(application,
 “The login was invalid. Try again?”,
 MessageDialogRequest.YES_NO_DIALOG);

COPYRIGHT © 2002 - 2011 J IDE SOFTWARE, INC. A LL R IGHTS RESERVED

69

• Create a DialogRequest object and submit it using a static usability method:

MessageDialogRequest request = new MessageDialogRequest(
 “The login was invalid.”,
 “Try again?”,
 MessageDialogRequest.YES_NO_DIALOG);

DialogResponse response = MessageDialogRequest.showDialog(application, request);

• Create a DialogRequest object and submit to the ApplicationDialogsUI object:

MessageDialogRequest request = new MessageDialogRequest(
 “The login was invalid.”,
 “Try again?”,
 MessageDialogRequest.YES_NO_DIALOG);

ApplicationDialogsUI dialogs = application.getApplicationUIManager().getDialogsUI();

DialogResponse response = dialogs.showDialog(request);

• Create a DialogRequest and queue it. Then execute it later:

MessageDialogRequest request = new MessageDialogRequest(
 “The login was invalid.”,
 “Try again?”,
 MessageDialogRequest.YES_NO_DIALOG);

MessageDialogRequest.addQueuedDialog(application,“Invalid Login”, request);

 // Later

DialogResponse response = DialogRequest.showQueuedDialog(application, “Invalid Login”);

DialogRequests have an id field that can be used optionally to identify DialogRequests at runtime. This
is a simple String value. Use setID() and getID().

DialogListeners

A DialogListener can be registered to listen to all dialog activity via DialogEvents. There are two levels
of listening. A DialogListener can be set in the DialogRequest itself, in which case it only receives events

COPYRIGHT © 2002 - 2011 J IDE SOFTWARE, INC. A LL R IGHTS RESERVED

70

during the lifecycle of the request. Or, the DialogListener can be added to the ApplicationDialogsUI, in
which case it will be notified of all dialog activity.

DialogRequestHandlers

Internally, DialogRequests are handled by DialogRequestHandlers. These are registered and mapped
polymorphically by DialogRequest class. On occasion, it may be useful to access a DialogRequestHandler
and set some options. Also, if you create a special kind of DialogRequest that requires special capabilities,
creating and registering a DialogRequestHandler can be useful.

Why Have Managed Dialogs?

At this point you may be wondering why dialogs should be managed like this. What’s wrong with just
using JDialog or JOptionPane? To be clear, using the ApplicationDialogsUI for dialog activity is elective. But
we believe the benefits of using a managed system are manifold, so please allow us to elaborate on the
gains of allowing JDAF to manage your dialogs:

• Cross-Cutting Benefits – Having dialog activity centralized and formalized, and being able to listen
to all dialog interaction via the DialogListener mechanism, has significant potential. We use
listeners to perform tweaks on various dialog presentations on certain OS, for example. Being able
to queue requests allows for add-on dialogs or manipulations to dialogs in a modular fashion. Not
only does this provide improvements in maintenance, but it allows cross-cutting functionality to
be applied such as logging or other global dialog manipulations such as inserting custom
components in messages or file dialogs, or providing custom validation or other trappings.

• Extreme OS Fidelity - The differences between dialog presentations from OS to OS are staggering.
From message presentation (sub-titled on many platforms), to the ordering of buttons, to the way
dialogs are titled and centered. To implement these differences for each platform, for each dialog,
is impractical. Let JDAF do it.

• Consistency - All requests and responses are somewhat uniform in usage. This ultimately produces
more consistent and standardized code.

• Improved Design - As a general design principle separating the data from the view is always
desirable. While it may seem at first unorthodox, separating the request for the dialog from the
dialog execution itself, yet this method has some significant benefits. For example, consider the
variation of presentation on different platforms of messages, not just dialogs, but floating alerts,
sliding sheets, or other animation that has become a popular trend in modern UI design. If your
content is coupled to a JDialog, this becomes impractical to execute. Particularly if the display
characteristics are presented differently on different platforms.

COPYRIGHT © 2002 - 2011 J IDE SOFTWARE, INC. A LL R IGHTS RESERVED

71

As a real world example, on OS X, Apple recommends that you use the native file dialog as
opposed to the Swing JFileChooser. Having this separation of concerns allows this behavior to be
transparent to your application code.

• Modularity - If we where to take a sampling of dialog examples from Swing, we actually would see
a separation of concerns in the design. For example, JOptionPane and JFileChooser are both
Components, not Dialogs. They each contain a createDialog() method for actual presentation.
These methods simply wrap the component in a JDialog for presentation.

Using a StandardDialogRequest is a similar model. Your dialogs will actually be more modular,
and hence reusable, if you simply code the content and wrap it in a StandardDialogRequest,
allowing the ApplicationDialogsUI to host the component in an OS dependant manner.

Furthermore, being able to queue DialogRequests is a powerful way to hide implementation
details of the request itself, and a scaleable approach to introducing snap-on standard dialogs via
plug-in ApplicationFeatures or by other means, that can be accessed by others in a formal way.
For example, Preferences, About, and an Application Exit warning dialogs are queued dialog
requests and can be accessed using the constants in the ApplicationDialogsUI. The
implementation details of their presentation and construction on not important.

Presentation Example

Concerning the distinctions in the expression of dialogs, consider the following Yes/No/Cancel confirm
dialog:

 MessageDialogRequest.showConfirmDialog(
“Your license will soon expire. For the least amount of interruption, ” +
 “we recommend that you renew \nyour license at your soonest convenience!”+
 “Do you wish to update now?”, MessageDialogRequest.YES_NO_CANCEL_DIALOG,
 MessageDialogRequest.WARNING_STYPE);

The following screenshots where produced by this code on the different OS/platforms. We made a
similar dialog with JOptionPane. Notice the dramatic difference in presentation. Consider differences in
both comparing an equivalent JOptionPane dialog, and JDAF dialogs to each other on the different OS:

CROSS PLATFORM – JOPTIONPANE

COPYRIGHT © 2002 - 2011 J IDE SOFTWARE, INC. A LL R IGHTS RESERVED

72

CROSS PLATFORM – JIDE DESKTOP APPLICATION FRAMEWORK

GNU/LINUX GNOME – JOPTIONPANE

GNU/LINUX GNOME – JIDE DESKTOP APPLICATION FRAMEWORK

COPYRIGHT © 2002 - 2011 J IDE SOFTWARE, INC. A LL R IGHTS RESERVED

73

MAC
OS X - JOPTIONPANE

MAC OS X - JIDE DESKTOP APPLICATION FRAMEWORK

WINDOWS XP –

 JIDE DESKTOP APPLICATION FRAMEWORK AND JOPTIONPANE ARE SIMILAR

Notice the differences in dialog size, title formatting, information presentation, and button alignment.
JDAF versions follow guideline recommendations. The JOptionPane versions have that homogenous look
on all platforms (looks like Windows).

Not obvious in these screenshots is how ApplicationDialogsUI positions dialogs. Positioning is also
mentioned in guidelines. Generally, a centered dialog is normal, but on Mac OS X for example, the dialog is

COPYRIGHT © 2002 - 2011 J IDE SOFTWARE, INC. A LL R IGHTS RESERVED

74

conventionally positioned ¼ down on the vertical. Also, Mac dialogs normally use the application icon in
messages. (This is facilitated by using the PLAIN_DIALOG constant, hence, it is important to set your
application icons in the ApplicationUIManager.)

Message Dialogs

MessageDialogRequest provides message dialogs in the style of JOptionPane. In fact, it includes many
static usability methods patterned specifically after the static methods in JOptionPane. Message and
confirm dialogs are supported with MessageDialogRequest. Constants define general dialog message
options. MessageDialogRequest supports the following default dialogs styles:

• OK_DIALOG (Similar to JOptionPane DEFAULT_OPTION)
• OK_CANCEL_DIALOG
• YES_NO_ DIALOG
• YES_NO_CANCEL_OPTION

The following icon styles are supported as well:

• PLAIN_ STYLE
• ERROR_STYLE
• INFORMATION_ STYLE
• QUESTION_ STYLE
• WARNING_ STYLE

When working with the static usability methods, response codes are returned, as opposed to the
DialogResponse object (See DialogResponse.getCode()). The response codes will be one of:

• RESPONSE_YES
• RESPONSE_NO
• RESPONSE_CANCEL

Sun, Apple and GNU/Linux-Gnome guidelines recommend the use of subtitled message formatting.
Notice the message formatting in the previous examples. However, subtitling messages is an extra burden
on the cross-platform developer who attempts to respect OS-guidelines. There is a significant difference in
implementation between single-line and subtitled dialog requirements.

To this end, we recommend that all messages be provided in a two-sentence format. The
ApplicationDialogsUI will use a BreakIterator to split the sentences for use in subtitled dialogs, and simply
use both sentences in non-subtitled dialogs. Alternatively, if one is migrating to JDAF from messages with
only single line input, use the dialog signatures that provide for a dialog title. The subtitle logic will demote

COPYRIGHT © 2002 - 2011 J IDE SOFTWARE, INC. A LL R IGHTS RESERVED

75

the title argument to the primary message line, use the message as the secondary line, and repurpose the
application name as the dialog title.

As a passing comment, it appears on most platforms there is a general tendency not to place special
text into the title of message dialogs, but to use the application name. To this end we provide dialog
method signatures that do not require a title, but use guidelines to provide the appropriate title and
formatting.

Finally, all DialogRequest object maintain a properties Map. While this is for general and future use,
MessageDialogRequest will use this Map as a source for an ObjectFormat and pass all messages through it.
Hence messages can be parameterized using the UL-syntax supported by ObjectFormat. By default the
“application” property will always be set with the GUIApplication instance, so any access method in your
GUIApplication can be used in your messages.

File Dialogs

The FileDialogRequest facilitates file chooser dialogs in both Swing and native flavors. Which dialog it
uses depend on the guidelines of the OS. As a developer however, the implementation is transparent.
Constants define general file dialog options. FileDialogRequest supports the following default dialogs
styles:

• OPEN_DIALOG
• SAVE_DIALOG
• CHOOSE_DIRECTORY_ DIALOG

When working with the static usability methods, the selected File(s) are returned, as opposed to the
DialogResponse. But there is significant flexibility when using the request itself such as using FileFilters,
providing FileViews, etc.

Of special note; when using the FileBaseApplication or just installing the FileHandlingFeature, there is
a significant improvement in quality when working with the underlying file system. The feature tailors file
filters to those supported by your application. It also provides automatic detection and responses to
platform-specific file validations and errors, using over 13+ OS-specific and guidelines-recommended file
dialog alerts, warnings, and negotiations. File handling is discussed more in depth later in this document.
(See “Making a Document-Based Application – File Mediation”.)

User Dialogs

To present your own dialog in a GUIApplication use the StandardDialogRequest. The basic idea is to
simply provide the content for the dialog and allow the ApplicationDialogsUI to present it. The content for
the dialog is simply a JComponent.

COPYRIGHT © 2002 - 2011 J IDE SOFTWARE, INC. A LL R IGHTS RESERVED

76

Dialog buttons are set in the DialogRequest using the DialogOptions class. DialogOptions is a special
Map implementation that is particular concerned with keying button names. The significance of these keys
is that they define the canonical roles of buttons in the dialog. The following keys are defined:

• YES_BUTTON
• NO_BUTTON
• CANCEL_BUTTON
• HELP_BUTTON

There are many static createXButtons() methods in DialogOptions that provide default configurations
of common dialog button combinations.

• createStandardButtons(dialogType)
• createYesButtons(string)
• createYesNoButtons(string, string)
• createYesCancelButtons(string, string)
• createYesNoCancelButtons(string, string, string)

DialogOptions contains localized default values based on the create method. For example, calling
DialogOptions.createYesNoCancelButtons(null, null, null) will populate the Map with the defaults for the
keys YES_BUTTON, NO_BUTTON, CANCEL_BUTTON, which are the localized Strings “Yes”, “No”, “Cancel”.
Because the keys describe the role of the buttons, these same create methods can be supplied with
application-specific synonyms, for example:

DialogOptions.createYesNoCancelButtons(“Save”, “Don’t Save”, null);

This will yield the same result codes as the standard “yes, no, cancel” configuration. The Jide Commons
Layer provides the interface ButtonNames which contains constants for common buttons. DialogOptions
supports this interface and directly supports using these constants as values in the DialogOptions. The
localized strings will be used in their stead.

To add individual buttons, use the putButton() method. You can use put(), but if you are using the
ButtonNames constants, the putButton() version will do the string substitution for you. For example:

DialogOptions buttons =
 DialogOptions.createStandardButtons(OK_CANCEL_DIALOG);
// APPLY is the key, but we can use the key in the value position
// where it will be substituted with the localized button string
buttons.putButton(APPLY, APPLY);

You may add a help button to the DialogOptions that integrates with the application HelpSource.

DialogOptions buttons = …

COPYRIGHT © 2002 - 2011 J IDE SOFTWARE, INC. A LL R IGHTS RESERVED

77

buttons.putButton(DialogOptions.HELP_BUTTON, null));
buttons.put(HelpSource.HELP_HINT_PROPERTY_NAME, "mytopic");

Internally, the DialogButtonPanel will be used to render the values from the DialogOptions in an OS-
guidelines recommended way.

In order to control the validation of your dialogs content, you can set a DialogListener into the
StandardDialogRequest. The DialogResponse from the DialogEvent passed to your listener, will reflect the
value of the pressed button. It is most concise to actually have your Component implement the
DialogListener interface, so that your code is better encapsulated. As an example:

JComponent myDialogPane = new MyDialogPane();
StandardDialogRequest request = new StandardDialogRequest(
“My Dialog”, myDialogPane, (DialogListener)myDialogPane);
DialogResponse response =
 StandardDialogRequest.showDialog(application, request);

Furthermore, there are showDialog() signatures will automatically register your Component if it is a
DialogListener. Of course, these requests can be queued, and there are static usability methods that make
this code even more concise. See StandardDialogRequest in the javadoc.

DialogPane

JDAF provides a convenience JPanel subclass that already implements DialogListener. It is unnecessary
to implement the listener methods; they are delegated to lifecycle methods. Use these methods instead
as they provide a clear interface to dialog behavior when using the managed dialog subsystem.

public class MyDiaogPane extends DialogPane {
 protected void initializeComponents(DialogRequest request) {
 // Setup your dialog Components.
 }
 protected void updateComponents(DialogRequest request) {
 // Set/reset the value state of components before
 // showing/resetting for the purposes of cached requests.
 }
 protected void commitComponents(GUIApplication application) {
 // Propagate dialog information to the application.
 }
 protected void validateComponents(DialogRequest request,
 DialogResponse response)
 throws ApplicationVetoException {
 // Perform validation logic.
 }

COPYRIGHT © 2002 - 2011 J IDE SOFTWARE, INC. A LL R IGHTS RESERVED

78

}

The GUIApplication can be accessed via getApplication(). The DialogButtonsPanel can be accessed
easily using getDialogButtons(). This implementation also ensures that DialogEvents intended for
secondary dialogs are ignored.

About Dialog

The ApplicationDialogsUI provides a default About dialog for a GUIApplication as a queued
StandardDialogRequest. The request is stored under the key ApplicationDialogsUI.ABOUT_
DIALOG_REQUEST_KEY. Default about content is provided by using the application name, version string,
and application icon. However, this is minimal. We recommend that a “real” about content be supplied if
the project is of significant effect.

To provide your own About dialog content, simply set the content component in the queued
StandardDialogRequest, for example:

// create a simple panel with image
Image applicationImage = //
JComponent aboutPane = new JPanel(new BorderLayout());
aboutPane.add(new JLabel(new ImageIcon(applicationImage)));

// use a static usability method to set the contentComponent
// of the queued StandardDialogRequest
StandardDialogRequest.setQueuedDialogRequestComponent(application,
 ApplicationDialogsUI.ABOUT_DIALOG_REQUEST_KEY, aboutPane);

The AboutAction calls this queued request.

Preferences Dialog

The ApplicationDialogsUI provides a means for defining a preferences dialog for a GUIApplication
using the PreferencesDialogRequest. PreferencesDialogRequest is simply a specialized
StandardDialogRequest. If your application will use a preferences dialog, it should be stored under the key
ApplicationDialogsUI.PREFERENCES_DIALOG_ REQUEST_KEY.

Since this is an optional feature, the PreferencesAction will need to be added to the applications
ActionMap as well.

Here is a long hand example:

// Add the action
application.getActionMap().put(ActionKeys.PREFERENCES, new PreferencesAction());

// set a preferences pane in the request

COPYRIGHT © 2002 - 2011 J IDE SOFTWARE, INC. A LL R IGHTS RESERVED

79

JComponent preferences = new MyPreferencesPane();
PreferencesDialogRequest request = new PreferencesDialogRequest(preferences, (DialogListener)preferences);

// queue the request using the static usability method
PreferencesDialogRequest.addQueuedDialog (
 application, ApplicationDialogsUI.PREFERENCES_DIALOG_REQUEST_KEY, request);

PreferencesDialogRequest provides a static helper method called installPreferences()to do all this work
in a single line, minimizing this work:

PreferencesDialogRequest.installPreferences(application, preferencesPane);

PreferencesDialogRequest provides some options concerning the button configuration, such as
whether to show an “Apply” button. Otherwise it shows OK/Cancel buttons only. The ApplicationDialogsUI
provides the appropriate title, position and presentation the dialog.

While the storage and retrieval of the preferences can be implemented using the java.util.Preferences
node from DesktopApplication getPreferences(), the method of storage is certainly up to your application.
You may wish to use the platform data directory and use a java.util.Properties object and the
PropertiesFileFormat to manage the data. The data directory is available from the application
getDataDirectory().

PreferencesPane

PreferencesPane is a DialogPane subclass that can be used to provide a preferences or options dialog
that fits well with OS guidelines. On Windows OS, there is an apply button and on Max OS X there are no
buttons, but the apply ocurrs when the dialog closes. These details are managed.

PreferencesPane pane = new PreferencesPane() {
 protected void initializeComponents(DialogRequest request) {
 }
 protected void updateComponents(DialogRequest request) {
 }
 protected void updatePreferences(GUIApplication application) {
 }
 protected void validateComponents(DialogRequest request,
 DialogResponse response)
 throws ApplicationVetoException {
 }
};

COPYRIGHT © 2002 - 2011 J IDE SOFTWARE, INC. A LL R IGHTS RESERVED

80

Legacy Dialogs

To interface pre-existing dialogs to the ApplicationDialogsUI, including ones from the Jide libraries, we
provide the CompatibleDialogRequest. This is simply a wrapper request that places your dialog in the
managed UI pipeline where it is eligible for DialogEvents. Here is an example using the static method:

DialogRequest response =
 CompatibleDialogRequest.showDialog(application, new MyDialog());

To gain tighter integration with the framework, you can set a DialogListener in addition and use the
dialogClosed event to set up the DialogResponse values with values from your dialog.

Working with Menus
GUIApplication manages menu bars in the framework. It provides standard File, Edit, Window, and

Help menus. We call these “standard menus” because they are common menus recommended by all OS
guidelines, though they may have very different layouts. To define additional application menus, or
customize the standard menus, the developer simply installs a MenuBarCustomizer in the GUIApplication.

You may also use the AutoInstallActionsFeature to install Actions into menus without interfacing with
the menus at all.

MenuBarCustomizer

To add your own application specific menus or customize standard menus, simply add a
MenuBarCustomizer to the GUIApplication using addMenuBarCustomizer(). A MenuBarCustomizer is
called every time a new menu bar needs to be generated. A MenuBarCustomizer has two methods:

public void customizeStandardMenu(String, JMenu, ApplicationMenuBarsUI);
public JMenu[] createApplicationMenus(ApplicationMenuBarsUI);

The customizeStandardMenu() method will be called for each standard menu. The first argument is
the menuID, which defines which menu is being passed. All menuIDs can be found in the MenuConstants
interface. The following constants define the standard menus:

• FILE_MENU_ID
• EDIT_MENU_ID
• WINDOW_MENU_ID
• HELP_MENU_ID

The JMenu instance is passed in for each standard menu. Actions can be accessed from the
ApplicationMenuBarsUI object via getAction(actionKey)as a convenience. Standard menus are arranged
internally into MenuGroups. If you want to add Actions to a standard menu, we recommend that you look-

COPYRIGHT © 2002 - 2011 J IDE SOFTWARE, INC. A LL R IGHTS RESERVED

81

up the respective MenuGroup and add to it instead of adding to the menu directly. In this way actions can
be added in a guidelines-compliant manner. MenuGroups are explained later in this section.

For example, most guidelines specify where “user” items should go in a particular standard menu. Since
this location is dependent on the OS, using the respective MenuGrouping allows the item to be placed in a
compliant manner. The following code adds an item from a registered Action called “export” to the user
area of the File menu:

public void customizeStandardMenu(String id, JMenu menu,
 ApplicationMenuBarsUI menusUI) {
 if(id.equals(FILE_MENU_ID)) {
 menusUI.addMenuItem(FILE_USER_GROUP_ID, menu, “export”);
 }
}

The createApplicationMenus() method of the MenuBarCustomizer should return an array of
application-specific menus. The ApplicationMenuBarsUI will make sure the menus are placed properly in
the menu bar. For example:

public JMenu[] createApplicationMenus(ApplicationMenuBarsUI menusUI) {
 JMenu menu = menusUI.defaultMenu(MY_MENU_ID, "MyMenu");
 menu.add(menusUI.getAction("myAction1"));
 menu.add(menusUI.getAction("myAction2"));
 // ...
 return new JMenu[]{menu};
 }

 We recommend that you use the ApplicationMenuBarsUI factory methods defaultMenu(),
defaultMenuItem(), defaultRadioButtonMenuItem(), and defaultCheckBoxMenuItem(), etc. where
appropriate when constructing menus. Each of these methods accepts Actions or Action keys. While using
these methods is elective, creating menus in this manner ensures that the application scales properly on
various platforms, and that the ApplicationMenuBarsUI can provide the most appropriate
implementations. The application code ends up more concise as a bonus.

General Menu Options

While the OS-specific ApplicationMenuBarsUI subclass will likely make the most appropriate settings
for your application concerning menus, here are a few options of interest.

• Use setUsesMenuBars(false) to not use menubars at all, or to manage them yourself. You can use
a WindowCustomizer to install the JMenuBar. We do not recommend this, as it defeats the
guidelines compatibility features of JDAF. We recommend using the MenubarCustomizer instead.

COPYRIGHT © 2002 - 2011 J IDE SOFTWARE, INC. A LL R IGHTS RESERVED

82

However, there are always exceptions. Note that on Mac OS X there will always me a minimal
menubar.

• Use setShowIcons(true) to force icons to be shown in menus. Some ApplicationMenuBarsUIs will
ignore this option if icons are specifically prohibited; others turn it on by default.

• Use setUseHelpMenu(false) to suppress the Help menu. This is not recommended as some
platforms use this menu for the “About” command.

• Use setUseWindowMenu(false) to suppress the Window menu. If the application is set for a single
window, this menu is suppressed by default.

A Note about Edit Menus

The standard Edit menu provides Actions for undo, redo, cut, copy, paste, select all, and clear/delete.
All Actions except undo/redo are ComponentAction instances; i.e. they operate by executing the
respective Action from the ActionMap of the focused Component. Undo and Redo however interact with
the focused DataModel’s UndoManager, which requires UndoableEdits to exist to be effective. So, there is
a degree of cooperative functionality required between the framework and the developer.

Three issues are involved in facilitating this Edit functionality in your application:

1) Conditionally enabling the respective Edit Actions in the Components ActionMap.
2) Providing the edit functionality via the Component TransferHandler.
3) Providing UndoableEdits for any edits.

Our current solution provides String-based editing for JTextComponent, JList, JTable, and JTree. If
using the default Swing model implementations and using String values only, we will provide edit Actions
and Undo/Redo behavior. By “default model” we mean DefaultListModel, DefaultTableModel,
DefaultTreeModel, for JList, JTable, and JTree, respectively. Swing provides undo behavior for
JTextComponent already, which we tap into automatically7. If the developer can live with these
constraints, we can provide base edit functionality for these components. Otherwise, the tooling will
simply enable the Components Actions if you provide them, based on the selection states.

 To bind a Component with the Edit menu subsystem, simply call the static
EditUtils.installEditTooling(Component) for a given Component. This can be done when setting up your
DataView. There is a method signature for each of the four major component types. If you are using
DataViewPane, it includes the method installEditables() that automatically installs this tooling on all

7 To keep a JComponent from posting UndoableEdits, set the client property EditUtils.OMIT_UNDO_REDO to Boolean.TRUE

COPYRIGHT © 2002 - 2011 J IDE SOFTWARE, INC. A LL R IGHTS RESERVED

83

compatible Components in the view contents. You can cause any component to not be included in the edit
system by supplying

We are currently in R&D for a solution that will minimize the work the developer needs to do to
support these Edit menu features. In the meantime the developer will want to implement cut, copy, paste,
select all, and delete/clear actions for each component as desired, and place the action in the
Component’s ActionMap. If these actions are missing, the Edit menu items will disable appropriately when
the component is focused.

Managed UI Menus

As comfortable as one may feel defining menus in Swing, challenges arise when approaching
application menuing from a truly cross-platform and OS-guidelines sensitive perspective. The scheme by
which menubars are implemented ends up being highly OS-dependant due to the differences in
recommended menu item positions, windowing-styles, and Java implementation/OS issues.

The ApplicationUIManager uses an OS-specific ApplicationMenuBarsUI subclass to manage application
menus. It provides standard menus depending on the OS guidelines. To understand how this adaptive
system works, a few objects are worth noting: MenuGroup and MenuGrouping.

MenuGroups

Recommended menus and their contents are different between OS’. A MenuGroup helps to manage
this by facilitating a span of menu items in a menu that represent certain functionality, such as “save
items” or “help items”. Each standard menu is segmented into these MenuGroups. By adding items to a
MenuGroup, instead of a menu directly, the application UI can handle where the items are laid-out in the
underlying menus. By working with the MenuGroup the developer can define menus in a uniform way that
otherwise would have required special platform-dependant coding.

MenuGroup can layout a group of items normally, one after the other “in-line”, or it can layout the
items in a submenu. One example of this feature is in the implementation of the “Recent Documents”
feature (See “Making a Document-Centric Application”). On Windows XP, recent documents are displayed
inline in the File menu. But on other platforms, they are defined in a submenu. To the developer it doesn’t
matter. Interfacing with the MenuGrouping is the same, because the underlying MenuGroup manages the
details.

A MenuGroup will manage separators transparently so that items in each group are properly
delineated. This can be turned off by calling setUseSeparators(false) on the MenuGroup.

MenuGroups come in three-flavors, distinguished by the types of menu items they produce.
MenuGroup just uses standard menu items. CheckBoxMenuGroup will create checked menu items.
RadioButtonmenuGroup will create radio button menu items and manage them with a ButtonGroup for
exclusive selection.

COPYRIGHT © 2002 - 2011 J IDE SOFTWARE, INC. A LL R IGHTS RESERVED

84

A MenuGroup object requires a reference to a “root” menu and an “anchor item”. The anchor item
determines how and where the menu is laid out. The anchor item can be one of the following:

Anchor Item Positioning Logic

null menu items will appear at the top of the root menu

JMenuItem menu items will appear underneath the menu item

JMenu menu items will appear in a sub menu of the anchor item

MenuGroup menu items will appear after the last item in the anchor MenuGroup

This last option is important. Complete virtual menu structures can be created simply by linking
MenuGroups, even if the groups are empty (and the menu is empty). A MenuBarCustomizer may use the
MenuGroup structure, via the MenuGroupings, to fill in each menu with file-specific items.

MenuGroupings

In an MDI environment, there is a single menu bar. In an SDI environment, there are as many menu
bars as there are document windows. Some SDI-implementations require special tricks to keep the menu
bars maintained properly, such as Mac OS X. Hence, in most situations, there are many menus bars that
need to be maintained and synchronized in an application.

JDAF provides standard File, Edit, Window, and Help menus and associated Actions. In most OS
guidelines specifications, there are predefined, or at least conventionally understood, positions where
menu items should go in a given menu. While it is true that menus from OS to OS will have items that
perform similar functionality, the difference between the layouts of these functions can be dramatic.

To handle these challenges, each standard menu is partitioned into multiple MenuGroupings. A
MenuGrouping facilitates the synchronization of menus across all menu bars. Mutator methods that add,
insert, remove, and replace menus items in a MenuGrouping affect all menus in all menu bars in the
application UI. For example, if an Action is added to a MenuGrouping, a menu item is added to all menu
bars in the application. A menu can have more than one MenuGrouping to manage particular sets of
menu items.

COPYRIGHT © 2002 - 2011 J IDE SOFTWARE, INC. A LL R IGHTS RESERVED

85

MenuGroupings internally do not access the JMenu directly; instead they manage a collection of
MenuGroups which represent item groups in each menu of the application. A MenuGrouping manages a
MenuGroup for each menu it represents.

MenuGroupings can be accessed from the ApplicationMenuBarsUI object using the method
getMenuGrouping(groupingID). A MenuGroup can be accessed from a MenuGrouping using a particular
JMenu instance as a key via getMenuGroup(JMenu). And you can discover what MenuGroups a menu has
using getMenuGroups(JMenu). The MenuGroup for a particular menu instance in a particular
MenuGrouping can be accessed from the ApplicationMenuBarsUI using getMenuGroup(groupingID,
JMenu). See the javadoc for other methods that allow access to the menuing system.

MenuGrouping IDs are defined in the MenuConstants interface:

FILE_NEW_GROUP_ID EDIT_UNDO_GROUP_ID

FILE_OPEN_GROUP_ID EDIT_EDIT_GROUP_ID

FILE_SAVE_GROUP_ID EDIT_EDIT_SPECIAL_GROUP_ID

FILE_PRINT_GROUP_ID EDIT_USER_GROUP

FILE_EXIT_GROUP_ID MENU_PREFERENCES_GROUP_ID

FILE_USER_GROUP_ID HELP_ABOUT_GROUP_ID

WINDOW_ARRANGE_GROUP_ID HELP_HELP_GROUP_ID

WINDOW_ARRANGE_SPECIAL_GROUP_ID WINDOW_ACTIVATE_GROUP_ID

Using MenuGroupings with Custom Menus

While it is important to use the ApplicationMenuBarsUI object when working with the standard
menus, it is certainly up to the developer whether managing custom application menus using the
MenuGroups/MenuGroupings sub-system is desirable. If you decide go this route here are some tips:

1. At pre-run time, create only one MenuGrouping for each functional “span” of items in your
application. Add your MenuGrouping to the ApplicationMenuBarsUI via putMenuGrouping() with
the key that can be used to identify it when adding menu items.

2. In your MenubarCustomizer add MenuGroups to the MenuGrouping for each menu created. Then
add Actions or menu items to the MenuGroup.

Alternately you may desire to use the AutoInstallActionsFeature, which will install menu items and even
create menus automatically based on Action properties.

COPYRIGHT © 2002 - 2011 J IDE SOFTWARE, INC. A LL R IGHTS RESERVED

86

OpenWindows

OpenWindows is a special MenuGrouping used internally in the standard Window menu. Each OS
supports this MenuGrouping under the WINDOW_ACTIVATE_GROUP_ID key. It uses
CheckBoxMenuGroups to represent each window. As the ApplicationWindowsUI opens a new DataView
window, an ActivateWindowAction will be added to the application’s ActionMap. ActivateWindowActions
focus the respective DataView, which brings its window to front.

The developer shouldn’t interface with these Actions directly. An OpenWindowsFormatter can be set
in thr ApplicationMenuBarsUI to provde custom formatting of the appearance of these DataModels in the
application. By default, the ApplicationMenuBarsUI will install an appropriate OpenWindowsFormatter
that best suits the OS.

Working with ToolBars
GUIApplication automatically manages application toolbars. The framework provides one toolbar

called the “standard toolbar”, as recommended by the respective OS guidelines. To define additional
application toolbars, or customize the standard toolbar, the developer simply installs a ToolBarCustomizer
in the GUIApplication. But first, we will give a brief explanation of how toolbars are managed.

The ApplicationUIManager uses an OS-specific ApplicationToolBarsUI subclass to manage application
toolbars. Whether toolbars appear is OS-dependant. For example, application toolbars are disabled by
default on Mac OS X because they are application dependent and non-standard8. However on Windows XP
they are common. The Cross-Platform Application UI also supports toolbars. This can be manually
controlled with the pre-run option setUsesToolbars(), for example to remove toolbars from the
application. Normally, the managed UI determines whether to provide toolbars or not.

You may also use the AutoInstallActionsFeature to install Actions into toolbars without interfacing
with the toolbars at all.

General ToolBar Options

The ApplicationToolBarsUI can implement different toolbar styling. The style is dependant on OS
guideline recommendations, or deduced from popular appearance studies. While the
ApplicationToolBarsUI decides on the appropriate default style for the OS, styles can be applied via the
setToolBarsStyle() method as a pre-run option. This method takes one or more style constant flags. The
following style constants are available:

8 Use the pre-run option setToolBars(true) to turn on toolbars for OS X. On Leopard, JDAF will prepare the toolbar to work as a
“unified toolbar”, but to complete this effect you must call the
OSXProperties.setBackgroundEffect(OSXProperties.UNIFIED_TOOLBAR) prior to instantiating the GUIApplication. You may then
use OSXProperites when building your UI to create compliant toolbar buttons.

COPYRIGHT © 2002 - 2011 J IDE SOFTWARE, INC. A LL R IGHTS RESERVED

87

• FLOATABLE_TOOLBAR_STYLE – Toolbars will be floatable
• ROLLOVER_TOOLBAR_STYLE – Toolbars will use the rollover function in Swing
• LARGE_TOOLBAR_STYLE – Toolbars will use large icons
• TEXT_TOOLBAR_STYLE – Use only with LARGE style to show text underneath
• UNIFIED_TOOLBAR – Mac OS X-only option to set the Unified toolbar mode

If LARGE_TOOLBAR_STYLE is not set, then the default small icon toolbar is assumed. Setting the style
to 0 will clear any special style settings, resulting in the default toolbar. If the style is to be changed
manually, we recommend this be done in an OSApplicationCustomizer on an OS by OS basis. For example,
the WindowsXPApplicationToolBarsUI simply uses scaled versions of the small icons for its large style,
which isn’t very appropriate. You can however replace the icons and use the large style.

A special feature of the ApplicationToolBarsUI is the integrated use of the JIDE Action Framework. The
library can be used manually on any OS by setting the pre-run option setUseJIDEActionFramework(true) in
the ApplicationUIManager. Note: This is ignored if the OS does not support application toolbars.

ToolbarCustomizer

To define application-specific toolbars or customize the standard toolbars, install a ToolBarCustomizer
in the GUIApplication using addToolBarCustomizer(). A ToolBarCustomizer is called every time a new
toolbar bar needs to be generated. ToolBarCustomizer has three methods:

public void customizeStandardToolBar(String toolbarName,
 Container toolbar, ApplicationToolBarsUI toolbarsUI);

public String[] getToolbarNames();

public void createApplicationToolBar(String toolbarName,
 Container toolbar, ApplicationToolBarsUI toolbarsUI);

The customizeStandardToolBar() method will be called for each standard toolbar. Currently there is
only one, the “Standard” toolbar, which is passed as the first argument. The next argument is the actual
toolbar component, and finally, the ApplicationToolBarsUI object. ApplicationToolBarsUI has a
convenience method getAction(actionKey) that accesses Actions from the application ActionMap. You can
also use the addToolBarButton(Container, String) which will lookup the Action and add the Toolbar
button. Or use defaultToolBarButton(). We recommend when creating toolbars that the developer use
these factory methods. These allow the ApplicationToolBarsUI to provide the most appropriate
implementation.

COPYRIGHT © 2002 - 2011 J IDE SOFTWARE, INC. A LL R IGHTS RESERVED

88

The getToolBarNames() method should return the displayable names of any additional toolbars that
need to be created. ApplicationToolBarsUI catalogs all toolbars for later retrieval using toolbar names. The
names may also be used in the UI as well.

The createApplicationToolBar() method will be called for each name returned from
getToolBarNames(). It passes the a name and toolbar component to add buttons to. If using the JIDE
Action Framework, a CommandBar instance will be input, otherwise a JToolBar is passed. To determine if
the JIDE Action Framework is being employed, use the ApplicationUIManager method
isJIDEActionFrameworkUsed(). But using the factory methods is the most resilient way to compose the
toolbars in a type independent manner. For example:

public String[] getToolbarNames() {
 return new String[]{"Format"};
}

public void createApplicationToolBar(String toolbarName, Container toolbar,
 ApplicationToolBarsUI toolbarsUI) {
 if(toolbarName.equals("Format")) {
 toolbarsUI.addToolBarButton(toolbar, "bold"); // uses Action name
 toolbarsUI.addToolBarButton(toolbar, "italic");
 toolbarsUI.addToolBarButton(toolbar, "underline");
 }
}

Some ApplicationToolBarUI implementations contain special methods for OS-specific behavior. This is
true on the Mac. Mac Guidelines allow for multiple styles of toolbar buttons. You can use the methods in
the MacOSXApplicationToolBarsUI to “format” your toolbar buttons. For example, to create a
“segmented” style set of buttons you would do this in your ToolbarCustomizer:

...
public void createApplicationToolBar(String toolbarName,
 Container toolbar, ApplicationToolBarsUI toolBarsUI) {

 if(toolbarName.equals("Toolbar1")) {
 toolBarsUI.addToolBarButton(toolbar, "back");
 toolBarsUI.addToolBarButton(toolbar, "forward");

 ((MacOSXApplicationToolBarsUI)toolBarsUI).makeSegmentedToolbar(
 toolbar, MacOSXApplicationToolBarsUI.BUTTON_STYLE_BEVEL, true);
}
...

COPYRIGHT © 2002 - 2011 J IDE SOFTWARE, INC. A LL R IGHTS RESERVED

89

It is normally unnecessary to access the toolbars outside of a ToolBarCustomizer. But, if you need to,
toolbars can be accessed using the ApplicationToolBarsUI method getToolBars(toolbarName). This returns
an array of Containers of all versions of that Toolbar in each open window. The framework treats all
toolbars as Containers so casting may be required between a CommandBar and a JToolBar if the JIDE
Action Framework is being used.

ApplicationFeature
JDAF provides a facility for imparting functionality to a GUIApplication modularly, without subclassing

the GUIApplication class itself; the ApplicationFeature.

ApplicationFeature allows for cross-cutting application capabilities to be encapsulated and reused in
different GUIApplications. It can be approached as a “sub-controller” that partitions your
application’s functionality into maintainable pieces, or it can be approached as a simple a way to add
reusable functionality to any application.

While this sounds like a “plug-in” facility, it’s not necessarily because it does not
facilitate class loading or dependency checking. However for the sake of functionality, it is
similar in that it adds functionality in a modular fashion, and it is most definitely the best
strategy for developing a GUIApplication in modular, reusable way.

To install an ApplicationFeature simply add one to a GUIApplication via addApplicationFeature(). To
remove one, call removeApplicationFeature(). You need only implement install(). ApplicationFeatures may
be accessed by class via getApplicationFeature(). (Only one instance of a given class may be added to a
given application.)

The developing of an ApplicationFeature is only as trivial as the functionality it seeks to provide.
ApplicationFeature is essentially a super-adapter of all the listeners and customizers available for a
GUIApplication, rolled into one object. An ApplicationFeature implements:

• ApplicationGUILifecycleListener
• DataModelListener
• DataViewListener
• DialogListener
• WindowCustomizer
• MenuBarCustomizer
• ToolBarCustomizer

COPYRIGHT © 2002 - 2011 J IDE SOFTWARE, INC. A LL R IGHTS RESERVED

90

Hence, the object can perform significant configuration on all aspects of the desktop application. The
feature is automatically registered to listen to all these events. You may override installListeners() to
optimize this aspect.

An ApplicationFeature can also be used to provide API reflecting the functionality they deliver, thereby
providing a clean interface for other developers.

Besides the adapter listener and customizer methods, ApplicationFeature provides two lifecycle
methods; install() and uninstall(). You’re only required to implement install(). These lifecycle methods
are called when the object is added and removed from the GUIApplication, respectively. The install()
method hence occurs during the time that one would normally set pre-run options when configuring a
GUIApplication. For example, you could install resources such as DataModelFactory, DataViewFactory, and
GUIApplicationAction objects, or any other resources and modifications, as appropriate to the feature.

If the install method fails for any reason, the normal behavior is to throw a RntimeException. If your
ApplicationFeature need not install successfully, set setPassiveExceptionHandling(true) and it will be
logged and bypassed instead of stopping the application.

We recommended adding ApplicationFeatures immediately after instantiating the GUIApplication, as
they are intended to extend GUIApplication functionality.

The uninstall() method should attempt to remove/restore any resources that where installed via
install(). The uninstall() method is only called if the ApplicationFeature is removed programmatically,
which may not be likely during the life of the application. So this behavior may be optional depending on
your usage. Be sure to document whether the feature can be uninstalled at runtime. The default
implementation throws a FeatureException that prevents uninstallation. However, if you require clean up
for your feature when the application exists call setUninstallOnExit(true) and the feature will be
uninstalled after the UI shuts down successfully.

JDAF provides the following ApplicationFeatures:

• AutoInstallActionsFeature – Designed to automatically populate menubars and toolbars using
Action properties.

• FileHandlingFeature – Designed to provide robust file handling functionality

• FramedApplicationFeature – Designed to facilitate application styles having auxiliary side
components, using JDAF MVC architecture.

• DockingApplicationFeature – Designed to integrate the JIDE Docking Framework into JDAF
MVC architecture.

• GlobalSelectionFeature – Designed to provide a global selection mechanism so that GUIs can
be aware of a globally selected object and when that selection changes.

• DialogLoggingFeature – Redirects Java Logging API Loggers to a dialog. This dialog has a save
button for storing the error to a file.

COPYRIGHT © 2002 - 2011 J IDE SOFTWARE, INC. A LL R IGHTS RESERVED

91

When creating an ApplicationFeature be sure to be sensitive to the possible effects of other
ApplicationFeatures or individual listeners and customizers. Currently there are no constraints defined to
prevent features from “rolling over” one another due to the open nature of the listening and customizing
mechanisms. It is advised that the class comments of an ApplicationFeature make clear any behavior that
may be considered “broad in stroke”, and provide a way to circumvent extreme behavior.

Making a Document-Centric Application
A file-based application, a.k.a. the “document-centric” application, is the most common and popular

style of desktop application. This type of application is primarily concerned with providing an environment
that works with data stored and retrieved from files.

JDAF provides a GUIApplication subclass specifically for this type of application, called the
FileBasedApplication. This should be used if your application is file-centric. FileBasedApplication installs
the FileHandlingFeature to facilitate its functionality and adds some usability methods for good measure.
However, an equivalent application can be configured by using a GUIApplication instance and simply
adding the FileHandlingFeature. This allows file handling capabilities to be “mix-in” if you have other
DataModel needs. With this understanding, we will focus on the FileHandlingFeature and the
capabilities it adds to a GUIApplication.

With the FileHandlingFeature, the File menu is configured with all the functionality
necessary for working with files; New, Open, Save, Save As, and a Recent Documents facility, among other
features. The actual “File” menu configuration is based on OS-guideline recommendations.

A FileDataModelFactory and FileDataViewFactory are installed to handle the creation of each virtual
“document” (FileDataModel + DataView). FileHandlingFeature uses FileFormat objects to define what data
formats the application should support. One simply uses the FileHandlingFeature instance when providing
the FileFormat and a DataView that can display and manipulate data in that format. The following
FileHandlingFeature methods provide this functionality:

l public void addFileMapping(FileFormat fileFormat, Class dataViewClass)

l public void removeFileMapping(FileFormat fileFormat)

The FileFormat and DataView class are associated so that files encountered with the given FileFormat
are displayed properly. Internally, the FileFormat is registered with both the FileDataModelFactory and
the FileDataViewFactory.

COPYRIGHT © 2002 - 2011 J IDE SOFTWARE, INC. A LL R IGHTS RESERVED

92

A Plain Text Editor Application
JDAF provides some basic FileFormats. One is the TextFileFormat, which reads and writes plain text. As

an example of a file-based application, consider this very simple example of a DataView implementation,
“TextView”, which manages plain text. We will use it to facilitate a plain text editor.

Public static void main(String[] args) {
 FileBasedApplication application = new FileBasedApplication(“Text Editor”);
 application.addFileMapping(new TextFileFormat(), TextView.class);
 application.run(args);
}

Following is the code for a TextView:

public class TextView extends DataViewPane {
 private JTextArea textArea;

 private DocumentListener docListener;

 protected void initializeComponents() {

 // sets the window size
 setPreferredSize(new Dimension(550, 400));
 setBackground(Color.WHITE);
 setBorder(null);

 // init text area
 textArea = new JTextArea();
 textArea.setFont(textArea.getFont().deriveFont(12f));
 textArea.setWrapStyleWord(true);
 textArea.setLineWrap(true);
 docListener = new DocumentListener() {
 public void insertUpdate(DocumentEvent e) {
 makeDirty(true);
 }
 public void removeUpdate(DocumentEvent e) {
 makeDirty(true);
 }
 public void changedUpdate(DocumentEvent e) {
 // unnecessary for plain text
 }
 };

COPYRIGHT © 2002 - 2011 J IDE SOFTWARE, INC. A LL R IGHTS RESERVED

93

 textArea.getDocument().addDocumentListener(docListener);
 textArea.setBorder(BorderFactory.createEmptyBorder(4,10,4,4));
 JScrollPane scrollPane = new JScrollPane(textArea);
 scrollPane.setBorder(null);
 scrollPane.setOpaque(false);
 add(scrollPane);

 // install editing features
 EditUtils.installEditTooling(getApplication(), textArea);
 }

 public void updateView(DataModel dataModel) {
 FileDataModel fileDataModel = (FileDataModel)dataModel;
 textArea.getDocument().removeDocumentListener(docListener);
 textArea.setText(fileDataModel.getData() != null ?
 fileDataModel.getData().toString() : "");
 textArea.setCaretPosition(0);
 textArea.getDocument().addDocumentListener(docListener);
 }

 // set the data to save
 public void updateModel(DataModel dataModel) {
 FileDataModel fileDataModel = (FileDataModel)dataModel;
 fileDataModel.setData(textArea.getText());
 }

 //This implementation just prints the TextArea component.
 public Pageable getPageable() {
 return new ComponentPageable(textArea);
 }
 }

TextView uses a JTextEditor to edit the text data for the application. The DataModel, which is
technically a FileDataModel, maintains the text data via its TextFileFormat member. FileHandlingFeature
makes sure the binding between the DataModel and the DataView is valid by associating the
TextFileFormat in both factories. Hence, the DataView can be confident that the data will be text.

COPYRIGHT © 2002 - 2011 J IDE SOFTWARE, INC. A LL R IGHTS RESERVED

94

Working with FileFormats
FileHandlingFeature provides data support for files by use of the FileFormat class. FileFormat is an

abstract class whose function is to bind data to and from the file system. A FileFormat can have a file type
(ex. ‘txt’), file type description (ex. ‘Text’), an icon, and a semantic name.

FileFormat treats data generically as a Java Object for the broadest support of data. New data type
support is trivial to introduce as long as the data format can be approached in Java by one who
understands the format, or with libraries that do so. To allow an application to support a data format,
subclass the FileFormat and implement these three methods:

• readData(File) – A FileFormat must be able to read the supported data from a file

• writeData(File, Object) – A FileFormat must be able to write data to the file in the supported
format

• makeDefaultData() – A FileFormat must be able to provide a default version of the data it
supports.

If the format is read only override the isReadOnly() method and return true.

Provided FileFormats

 JDAF provides five ready-to-use FileFormat implementations:

FileFormat Comment Data Type

ObjectFileFormat Reads and writes a plain Java
Object (.data9)

Serializable

PropertiesFileFormat Reads and writes in the Java
Properties format (.properties)

Properties

TextFileFormat Reads and writes plain text (.txt) String

XMLFileFormat Reads and writes XML (.xml) org.w3c.dom.Document |
String10

XMLObjectFileFormat Reads and writes a Java Object as
XML (.xml)

Object/Java Bean (Uses
XMLEncoder and XMLDecoder)

9 When using the ObjectFileFormat the .data extension is a somewhat nebulous choice. This format is not guaranteed to read
any .data file. We encourage the developer to brand this kind of file so that it is appropriate and unique to the application.
10 XMLFileFormat native data is a Document. But the format class provides methods for working with the XML as a String also.

COPYRIGHT © 2002 - 2011 J IDE SOFTWARE, INC. A LL R IGHTS RESERVED

95

FileFormat Semantics

A FileFormat implementation has somewhat of a virtual or implied functionality because file
extensions have a virtual nature to them. While ‘.txt’ is the conventional extension for TextFileFormat, as
is ‘.xml’ for the XMLFileFormat, these are conventional. There is nothing stopping one from defining a file
as .dat, and storing text in it. It is a matter of sensitivity to other programs and the branding needs of your
own files.

To the user, the data they are working with may be perceived as a “Project”, but internally the
ObjectFileFormat is being used, or perhaps a “Document”, when the TextFileFormat is being used.
“Drawing” or “Image” are other possible impressions.

This notion of the perceived format and the actual format we call “file format semantics”. The
FileFormat classes attempt to adopt the most appropriate extensions and descriptions by default. But this
extension can be changed in the constructor to suit application semantics. Also, constructors allow for a
semantic name to be defined as well. This information is propagated the FileDataModel’s semantic name,
and hence to the UI. And the extension is used in file filtering in open and save dialogs.

The semantic name is inherited from the associated FileFormat. You can use the FileHandlingFeature
method setUseSemanticNameForNewMenus(true) to specify whether a FileDataModel semantic name
shows in the “New” menu items when there are more than one FileFormat loaded. Generally this is option
is false, but may be desired otherwise the plain file description will be shown.

Some formats you may wish to view/open but would never originate in the application itself using the
NewFileAction. For these formats, call setCanCreate(false). This keeps the format from generating a
NewFileAction, but it can still be opened.

FileFormat Conversions

If FileFormat conversions are required by the application, the FileFormat to be converted to must be
subclassed and the following two methods must be implemented:

• isConvertableTo(FileFormat) – Return whether the input FileFormat can be converted to this
format.

• convertData(Object, FileFormat, File) – Called to perform the conversion of the Object data in the
input FileFormat to this format, and written to the input File.

Additionally, call setAllowsFormatConversions(true) in the FileHandlingFeature if convertible formats
are used. This causes the various UI elements to facilitate data format conversions by exposing convertible
formats in menus and dialogs, as appropriate.

COPYRIGHT © 2002 - 2011 J IDE SOFTWARE, INC. A LL R IGHTS RESERVED

96

When using a format with isReadOnly() returning true, in order to save the data you must implement
at least one convertible FileFormat that can convert the read only format.

Other FileFormat Uses

FileFormats are used by the FileHandlingFeature by virtue of adding a “file mapping”. This mapping
involves passing the FileFormat to the FileDataModelFactory and FileDataViewFactory and ultimately to a
FileDataModel when such data is loaded or saved. Once the mapping association is made, the actual read
and write operations are managed by the application automatically.

However, there is no reason FileFormats can’t be used individually. For example, to read or write
properties, xml data, or some other auxiliary file tasks. Simply instantiate one and use the readData() and
writeData() methods as needed.

Utility save and open dialog tasks, outside of the managed UI framework can also be facilitated using
FileFormats. Simply use the FileDialogRequest class. These methods take FileFilters as one of their
arguments. A FileFormatFileFilter can be used to wrap a FileFormat object for use in these dialogs. This
provides a higher quality of file dialog negotiation than using regular FileFilters, because the FileFormat
provides a greater degree of information that the FileFilter alone does not portray.

CommandLine File Loading
The FileHandlingFeature facilitates opening of files from the CommandLine automatically if the

program arguments have been captured via the CommandLine class. The FileDataModelFactory method
getCommandLineFiles() returns Files extracted from the CommandLine filtered by what FileFormats have
been set in the factory. Internally, a File.class ObjectConverter mapped to a FileFormatFileConverter is
used in the GUIApplication ConverterContext. This is used to detect files on the command line. Hence,
only files that have a resolvable FileFormat and exist in the file system will be opened.

Working with Document-Centric Actions
FileHandlingFeature installs, and in some cases replaces, some GUIApplicationActions specifically

designed for file-handling, as defined below:

Action Comment

NewFileAction Creates a new FileDataModel using the provided FileFormat. Replaces
the Action under ActionKeys.NEW.

OpenFileAction Opens a file using the FileFormat as a filter. Replaces the Action under
ActionKeys.OPEN.

RevertAction Reverts the DataView to the data in the File. Provides a revert alert

COPYRIGHT © 2002 - 2011 J IDE SOFTWARE, INC. A LL R IGHTS RESERVED

97

dialog.

SaveAsAction Performs direct and indirect “Save As” operation. Allows format
conversion if isAllowsFormatConversions() is true, and the file
FileFormats allow for conversion.

SaveAllAction Saves all open DataModels

NewFileAction allows for a FileFormat to be defined as the criteria. FileHandlingFeature will create a
NewFileAction for every FileFormat, and present them in a submenu, controlled by a MenuGrouping
under MenuConstants.FILE_NEW_GROUP_ID.

OpenFileAction presents an “Open File” dialog. One or more FileFormatFileFilter objects are used to
wrap the FileFormats and present them in the open dialog as available file types. If the file validates
properly (see next sub-section), the selected File will be used in a call to the application’s openData(File)
method. The FileDataModelFactory takes over from there. It uses the File to select the proper FileFormat,
binds the File and FileFormat to a new FileDataModel, and uses the FileFormat to read the file. Note, if
isAllowsMultipleOpens() is true, multiple files can be opened from the Open dialog. This simply repeats
this process for each file.

SaveAsFileAction presents a “Save” dialog. It makes use of DataModelListener events to detect when a
new File needs to be saved, and hence is able to invoke the Save dialog under indirect conditions, as well
as an invocation from the File menu. The setAllowsFormatConversions() method in FileHandlingFeature
actually delegates to this Action. If isAllowsFormatConversions() is true, all FileFormats that are convertible
to the saving FileFormat will be available in the dialog. If one of these other formats is selected by the
user, the framework takes care of performing the calls to the convertData() method, and updates the
DataModel with the new FileFormat. Otherwise, only the saving DataModel’s FileFormat is made
available, via a FileFormatFileFilter.

File System Mediation
One of the hidden risks of casual file system interaction in Java is the lack of file validation and

application integration in Swing’s JFileChooser. For example, JFileChooser has no logic to check for
potentially harmful read/write conditions such as locked files, externally modified files, illegal characters
on the OS, illegal filenames on the OS, or whether the user names a file after one that already exists (file
replace). The situation is only marginally better when using the native FileDialog. Only some validations
are performed, but not many, and not the same validations across all platforms.

Additionally there is the application interaction with the file system, such as save alerts and enforcing
that a file extension is actually attached to the file name when writing. These are all things that the

COPYRIGHT © 2002 - 2011 J IDE SOFTWARE, INC. A LL R IGHTS RESERVED

98

application developer must handle and can be a very time consuming, error-prone, and distracting
activity.

The problem compounds when considering multiple OS platforms and their individual semantics.
Characters that are illegal on Windows XP are not necessarily illegal on Unix.

Then there is the myriad of responses to these issues. Everything from guidelines recommended
response dialogs, to automatic OS-handled behavior. Again, these are not handled automatically by the
Java APIs. OS vendors expect their own native toolkits to be used, which provide some of these
protections; but cross-platform developer must be mindful of these conditions on all platforms.

To resolve this deficiency, JDAF provides safe, OS-sensitive, cross-platform conscious application
interaction with the underlying file system. The classes that facilitate this are FileSystemMediator and the
FileSystemResponseHandler.

FileSystemMediator

A FileHandlingFeature maintains a FileSystemMediator subclass called FileDialogValidator.
FileDialogValidator is used during File open and save scenarios by virtue of acting as a DialogListener. It
provides the following checks:

• Save Alerts
• File Read/Write Scenarios
• Illegal File Name
• Illegal File-System Characters
• File Type Integrity
• File Exists
• File Previously Opened
• Externally Modified

FileSystemMediator facilitates optional policies that can be set by the developer to define response
behavior which could be application specific.

The method setOpenPolicy() accepts constants that define responses to situations where the file has
been previously opened:

• OPEN_POLICY_BRING_TO_FRONT - FileDataModel will be focused (Default)
• OPEN_POLICY_IGNORE_IF_OPENED – Open request is ignored
• OPEN_POLICY_ASK_TO_REVERT – User will be asked to revert to the opening File

COPYRIGHT © 2002 - 2011 J IDE SOFTWARE, INC. A LL R IGHTS RESERVED

99

The method setSavePolicy() accepts constants that define responses for when the file has been
previously saved under the given name:

• SAVE_POLICY_ASK_TO_REPLACE – Allows user to decide to replace file (Default)
• SAVE_POLICY_REPLACE – Replaces file without user consent

Normally the default settings for both of these are sufficient.

FileSystemResponseHandler

For every condition detected by FileSystemMediator, there needs to be a response by the application.
FileSystemResponseHandler is an interface which provides opportunity to respond to file exceptions and
issues.

The FileHandlingFeature’s FileDialogValidator implements this interface as well and so responds to file
issues using guidelines recommended response dialogs. However, responses are also implemented by a
FileSystemMediator in a ConsoleApplication, which provides the very same responses, but via console
prompt interactions instead of dialogs.

One thing to note is that this behavior is automatic when using the FileHandlingFeature.

Recent Documents
FileHandlingFeature provides an integrated “Recent Documents” facility for the File menu. This facility

is implemented by the RecentDocuments object, which is a MenuGrouping subclass. It can be accessed
from the ApplicationMenuBarsUI using the RECENT_DOCUMENTS_MENU_ID key. While this is a managed
UI feature, there are some customizations that can be performed.

RecentDocuments can have an item limit, which can be set with setRecentItemLimit(). This is initially
set to a default value based on the OS. To clear recent items, you would call clearRecentItems().

RecentDocuments menu items are represented by OpenFileActions in the application’s ActionMap.
The ActionMap will have up to item limit-number of OpenFileActions, even if the files themselves are not
defined in all the Actions. Please do not add or remove these items directly in the ActionMap; use the item
limit control in the RecentDocuments object to control the number of recent items shown in the menu.

The appearance of recent document menu items is OS-specific. A RecentDocumentsFormatter is used
to format these items as they are introduced. The FileHandlingFeature provides a default
RecentDocumentsFormatter implementation based on the OS requirements. This object is set via the
setRecentFormatter() method.

COPYRIGHT © 2002 - 2011 J IDE SOFTWARE, INC. A LL R IGHTS RESERVED

100

Integration with Other JIDE Products
Since the Application UI feature of GUIApplication manages the application UI automatically, we

should briefly discuss how to use other JIDE products in your application.

Using JIDE Components and JIDE Grids should be straightforward, as they are used to build the
DataView implementation for your application. We recommend starting with DataViewPane, which is
based on JPanel and adds useful features.

JIDE Docking Framework
JIDE Docking Framework will integrate automatically by simply calling the ApplicationUIManager

method setUseJideDockingFramework(true). If the docking jar is in the classpath, JDAF will install the
Docking Framework in such a way that DataViews are installed into the Workspace portion of the
DockingManager.

Normal Docking

To use the Docking Framework traditionally as prescribed in its documentation, meaning without
DataModels and DataViews, use a WindowCustomizer. The window is guaranteed to be a DockableHolder.

application.getApplicationUIManager().getWindowsUI().
 addWindowCustomizer(new WindowCustomizer() {
 public void customizeWindow(ApplicationWindowsUI ui, Container window) {
 DockableHolder dockableHolder = (DockableHolder) window;
 DockingManager dockingManager = dockableHolder.getDockingManager();
 if(holder.getDockingManager().getFrame(“title”) == null) {
 // configure dockable frames
 }
 }
 public void disposingWindow(ApplicationWindowsUI ui, Container window){}
});

By default, JDAF maintains a layout called “default” under the data directory of the application (See
getDataDirectory()). JDAF will load and save this layout automatically.

To manage your own layout, call the ApplicationUIManager pre-run option
setManageLayoutPersistance(false). Then use a WindowCustomizer to load and save the layout as
prescribed in the JIDE Docking Framework documentation. You may call getLayoutPersistance() in the
ApplicationUIManager to return the appropriate LayoutPersistance object if you are, or plan to, mix the
Docking Framework and Action Framework, as this returns the appropriate instance.

COPYRIGHT © 2002 - 2011 J IDE SOFTWARE, INC. A LL R IGHTS RESERVED

101

There is another alternative however to the traditional usage of the Docking Framework; MVC
docking.

MVC Docking

As an alternative to traditional Docking Framework usage, JDAF provides a means of tightly integrating
the JIDE Docking Framework into JDAF MVC architecture via the DockingApplicationFeature. This feature
requires the use of secondary DataModels and allows a DataView to be docked. The idea is to let you
simply work with DataModels and DataViews and let the feature manage the docking.

For a DataModel's view to be routed to a DockableFrame, a DockableConfiguration must be defined
and added using addDockableMapping(). The DockableConfiguration defines how the docking framework
will be utilized when a given DataModel and DataView are introduced. The following example creates two
docks called “Frame1” and “Frame2”.

public class MyApplication extends GUIApplication {
 public MyApplication() {

 // feature
 DockingApplicationFeature feature = new DockingApplicationFeature();

 // a dockable mapping configuration
 DockableConfiguration config = new DockableConfiguration();
 config.setFrameName("frame1");
 config.setInitState(DockContext.STATE_FRAMEDOCKED);
 config.setInitSide(DockContext.DOCK_SIDE_WEST);
 config.setInitIndex(0);
 config.setDataModelClass(SecondaryBasicDataModel.class);
 config.setDataViewClass(DockedView.class);
 docking.addDockableMapping(config);

 // another configuration
 config = new DockableConfiguration();
 config.setFrameName("frame2");
 config.setInitState(DockContext.STATE_FRAMEDOCKED);
 config.setInitSide(DockContext.DOCK_SIDE_SOUTH);
 config.setInitIndex(0);
 config.setDataModelClass(SecondaryBasicDataModel.class);
 config.setDataViewClass(DockedView.class);
 docking.addDockableMapping(config); ...
 }

COPYRIGHT © 2002 - 2011 J IDE SOFTWARE, INC. A LL R IGHTS RESERVED

102

 //…DataView implementations
}

When a window opens, the default behavior of the DockingApplicationFeature is to install all
DockableConfigurations by originating each configured DataModel and docking their DataViews. You may
change whether openData() or newData() is used by calling setOriginationMode() to
OPEN_DATA_ORIGINATION_MODE (default) or NEW_DATA_ORIGINATION_MODE.

If you desire to not initially originate DataModels when the window opens, you may call the
DockableConfiguration method setAutoInstall(false). Then call toggleDockable(frameName) with the name
of the DockableFrame, or openData() or newData() manually. We provide the ToggleFrameAction to do
such a thing for you, and it maintains a checked state as well. Alternately, you can leave autoInstall true
and set the initState to DockContext.STATE_HIDDEN. Then when the DataModel is originated, the view is
hidden. The toggleDockable() will then simply hide and show the DockableFrame without effecting the
data lifecycle.

Be mindful during testing that JDAF by default stores the docking layout when the window closes, so the
initial states you define may be overwritten the next time you startup. That is, if the DockableFrame was
visible at first, then you close the DockableFrame using the close box, then exit the application, the next
run the DockableFrame will be hidden! Don't panic, you simply need to complete your code that manages
the visibility of the DockableFrame and show it again. or delete the default.layout file in the data directory
returned from getDataDirectory().

Should you need to define criteria for your mapped DataModel, call setCriteria() on the
DockableConfiguration. This criteria will be used to originate the DataModel. Be sure to pass this same
criteria in, if you call openData(criteria) or newData(criteria) manually on the GUIApplication.

The DockingApplicationFeature will automatically call saveData() on any of its mapped DataModels on
the dataModelClosing() event. By default this occurs when the window closes or with an explicit call to
closeData(DataModel). Now, when a user clicks on a DockableFrame, it's normal behavior is to hide. But,
you may wish for the behavior instead to close the DataView and DataModel, thereby forcing a save, and
in effect cleanly tighting the data lifecycle to the DockableFrames accessibility. (Opening a DataModel
opens the DockableFrame. Closing the DockableFrame closes the DataModel). To do this, call the
setCloseDataOnCloseFrame(true) on the DockableConfiguration. Note that the ToggleFrameAction is
knowledgeable of all this various behavior and will “re-originate and close” or simply “show and
hide” the DockableFrame as appropriate to the individual DockableConfiguration.

In this final example, we use a DockableConfiguration so that the feature will not originate the
DataModel on startup. The execution of the ToggleFrameAction will cause it to show and hide.

public class MyApplication extends GUIApplication {
 ...

COPYRIGHT © 2002 - 2011 J IDE SOFTWARE, INC. A LL R IGHTS RESERVED

103

 DockingApplicationFeature feature = new DockingApplicationFeature();
 DockableConfiguration config = new DockableConfiguration();
 config.setFrameName("Welcome");
 config.setAutoInstall(false);
 config.setInitState(DockContext.STATE_FRAMEDOCKED);
 config.setInitSide(DockContext.DOCK_SIDE_WEST);
 config.setInitIndex(0);
 config.setCriteria(“Hello World!”); // criteria ref
 config.setDataModelClass(SecondaryBasicDataModel.class);
 config.setDataViewClass(MyDataView.class);

 feature.addDockableMapping(config);
 ...
 getActionMap().put(“frame1”, new ToggleFrameAction(“Welcome”));

 // install in menu and toolbar
}

Note in this example, if you needed to call openData(criteria) or newData(criteria) methods directly,
you would use the criteria set in the DockableConfiguration (“Hello World!” in this case). If the criteria in
the DockableConfiguration is null, you may use the frameName in the methods call instead.

The DataModel and DataView mappings can be managed outside the feature as well, solely relying on
the criteria match to route the DataView to a DockableFrame. Internally, a HashedDataModelFactory and
SemanticNameDataViewFactory are used by the feature.

DockableFrames can be customized by adding a DockableFrameCustomizer:

 feature.addDockableFrameCustomizer(new DockableFrameCustomizer() {
 public void customizeDockable(DockingApplicationFeature feature,
 DockingManager manager,
 DockableFrame dockable,
 DataView dataView) {
 }
});

 The DockingManager can be customized and the layout managed manually by adding a
DockingManagerCustomizer:

feature.addDockingManagerCustomizer(new DockingManagerCustomizer() {
 public void customizeDockingManager(DockingApplicationFeature feature,

COPYRIGHT © 2002 - 2011 J IDE SOFTWARE, INC. A LL R IGHTS RESERVED

104

 DockingManager manager) {}
 public void loadLayoutData(DockingApplicationFeature feature,
 DockableHolder window,
 LayoutPersistence layoutPersistance) {}
 public void saveLayoutData(DockingApplicationFeature feature,
 DockableHolder window,
 LayoutPersistence layoutPersistance) {}
});

If no DockingManagerCustomizer is added, then JDAF will manage the a “default” layout in the data
directory (using getDataDirectory()). Otherwise, if this feature detects a DockingManagerCustomizer, it
turns off the default layout management so that your customizer can manage it. JDAF will provide the
appropriate LayoutPersistance object for both the Docking Framework and/or the Action Framework as
appropriate.

JIDE Action Framework
JIDE Action Framework will integrate into your application automatically by simply calling the

ApplicationUIManager method setUseJideActionFramework(true). If the jar is in the classpath, JDAF will
install and use a DockableBarManager.

The DockableBarManager can be accessed through the host window of a given DataView, which is
guaranteed to be a DockableBarHolder.

We recommend setting up toolbars using a ToolBarCustomizer. The ToolBarCustomizer treats the
toolbar itself as a Container. But code for adding buttons and other Components is identical whether you
are using the Action Framework or not, as long as you use the ApplicationToolBarsUI factory methods
defaultToolBar(), defaultButton(), addToolBarButton()and addToolBarSeparator(), the correct classes will
be used (CommandBar or JToolBar, JButton or JideButton).

This is important particularly if the Action Framework is used conditionally for different OS/platforms
as well as for OS Guidelines fidelity.

DocumentPane
If you are using an application style that results in a Tabbed UI (TDI_APPLICATION_STYLE or

MDI_APPLICATION_STYLE on Linux), the default Component for the tabs is a JideTabbedPane. However, if
you have JIDE Components available, the DocumentPane can be used simply by setting the
setUseDocumentPane(true) option on the ApplicationUIManager. You can access either tabbed
component from application like so:

ApplicationUIManager appUI = application.getApplicationUIManager();

COPYRIGHT © 2002 - 2011 J IDE SOFTWARE, INC. A LL R IGHTS RESERVED

105

Container frontWindow = appUI.getWindowsUI().getFrontWindow();
JideTabbedPane tabbedPane = (JideTabbedPane)appUI.getTabbedUI().
 getTabbedComponent(frontWindow);

If you need to use a custom DocumentPane implementation, you can install a DocumentPaneFactory in
the ApplicationTabbedUI like so:

application.getApplicationUIManager().getTabbedUI().setDocumentPaneFactory(
 new DocumentPaneFactory() {
 public Object createDocumentComponent(JComponent content,
 String name, String title, Icon icon) {
 ...
 }
 public Component createDocumentPane() {
 ...
 }
});

JIDE Stock Icons
While JDAF provides standard icons for those OS-platforms (XP, Vista/ Windows 7, Mac OS X) that

support icons by default, JIDE Stock Icon products contain beautiful sets of icons to provide for the rest of
your application functionality. Also, if you wish to have toolbar icons on Mac OS X, the Mac OS X icon set is
an easy choice.

JDAF provides a no hastle way to integrate these icons using the IconSetIconTheme. This IconTheme
will detect the OS-platform you are on and any stock icon library you have in the classpath, and will install
those icons based on the running OS-platform. Using is simple:

GUIApplication application = new GUIApplication(“My App”);
IconSetIconTheme iconTheme = new IconSetIconTheme();
iconTheme.install(application);
application.run();

IconSetIconTheme interacts with an internal JIDE Commons IconSetManager by mapping JDAF
ActionKeys to IconSet icon keys. Therefore, all the standard GUIApplicationActions provided by JDAF are
matched to the IconSet automatically. If you wish to use the other icons in the IconSet with a custom
action you have added to the GUIApplication ActionMap, you simply add an actonKey-to-IconSet mapping
like so:

iconTheme.addActonIconMapping(“export”, IconSet.File.EXPORT);

Where “export” is the actionKey. You can also access icons using the IconTheme methods
getSmallIcon() and getLargeIcon() or by accessing the IconSetManager directly using getIconSetManager(),
to gain access to the other icons in the IconSet for other purposes.

COPYRIGHT © 2002 - 2011 J IDE SOFTWARE, INC. A LL R IGHTS RESERVED

106

Making a Console Application
Console-based applications remain a popular development choice in the Linux and UNIX worlds. In

fact, many GUI programs are actually front-ends to command-line programs. Their continued popularity
remains because they are still the quickest way to build a utility or tool, test a model, or make a prototype
when time or other motivators will not permit a full GUI.

So what happens when you apply MVC architecture to console application development? Order and
Ease! Gone is the giant switch or if-else statement blocks that control input and program flow, replaced by
encapsulated and reusable ConsoleCommands. Gone are all the string parsing and data type conversion
chores, replaced by a ConsoleView that provides type-blocked reads and formatted writes! Additionally,
by virtue of the framework, you also get full data support, file handling, a help system, and printing
capability!

The Console Application API is not a trivial library. It is every bit as powerful as GUIApplication, just
without the GUI. So whether you’re making a custom shell emulator, a console game, utility, tool, test
harness, prototype, or a full-blown application, the Console Application API will greatly increase
productivity and help deliver a stable, maintainable, and robust application.

ConsoleApplication
ConsoleApplication is a subclass of DesktopApplication. Create a ConsoleApplication like so:

ConsoleApplication application = new ConsoleApplication (“My Application”, “menu”);
// configure application (built-in commands are available)
application.run(args);

The first argument in this constructor is the application name, which shows in an introduction prompt
when the application runs. The second argument is the “start command”. A ConsoleApplication is
“command-driven”. The user types a command into the Java console and the program responds by
locating and executing a ConsoleCommand. This repeats until the program is terminated.

ConsoleApplication is preconfigured with a dozen+ commands that manage data and file handling,
help, printing, and application termination. It also has an “idle” command. The idle command is a default
behind-the-scenes command that is used when an explicit command is undefined. It also serves as a fail-
safe command to ensure a ConsoleApplication can still run in the event a command is not recognized.

A ConsoleApplication supports only one type of view; a ConsoleView. ConsoleView is a virtual object
behind the actual command prompt. ConsoleView is managed automatically; there is no responsibility on
the developer for the view portion of the application. The primary focus of console application
development is deciding how data will be managed, and developing the commands necessary to perform
the functionality of the application.

COPYRIGHT © 2002 - 2011 J IDE SOFTWARE, INC. A LL R IGHTS RESERVED

107

Because the view is always present, a respective DataModel must also be present. Therefore,
ConsoleApplication is preconfigured with a FileDataModelFactory and a BasicDataModelFactory. In this
way the ConsoleApplication can create data by default, either from files off the command line, or by
default with a BasicDataModel.

ConsoleApplication Constructors
ConsoleApplication has many constructors. The constructor you choose largely has to do with your

application requirements and how to achieve a suitable data infrastructure. Below is a guide we hope will
aid in making this initial decision:

Constructor Arguments Comments

(String name) This is a minimal constructor. The application
name is always required.

ConsoleCommands and other customizations
should be added before run() is called. The idle
command will be the start command.

(String name, String startCommand) This is the most common constructor. It allows
the definition of the start command.

The start ConsoleCommand and other
commands should be added before run() is
called.

(String name, String startCommand ,
DataModelFactory dataModelFactory)

This constructor is useful to explicitly define a
DataModelFactory for the ConsoleApplication. In
this case, the input factory is placed before the
BasicDataModelFactory in precedence.

It is similar to the previous, in that the start
command can be specified.

The primary benefit is a custom
DataModelFactory provides more control over
the initiation of the DataModel. Hence, no
DataModelListener is needed.

(String name, String startCommand ,
DataModelFactory dataModelFactory,
ConsoleViewFactory consoleFactory)

This constructor is similar to the previous, but it
allows for a subclass of the ConsoleView-Factory
to be provided, so that a ConsoleView subclass
could be introduced, if needed.

COPYRIGHT © 2002 - 2011 J IDE SOFTWARE, INC. A LL R IGHTS RESERVED

108

Constructor Arguments Comments

(String name, String startCommand , Class
dataModelClass)

This constructor is useful in order to define the
type of DataModel to create automatically
without the definition of DataModelFactory or
DataModelListener.

(String name, Class dataModelClass) This constructor is similar to the previous; you
just don’t need to define the start command.

Managing Data

A ConsoleApplication is preconfigured with both a FileDataModelFactory and a
BasicDataModelFactory. A TextFileFormat is already registered with the FileDataModelFactory so text can
be read by default. Add or remove FileFormats as necessary using the FileDataModelFactory directly. It is
up to the developer as to whether this factory setup is sufficient to handle the data requirements.

Whatever the factory setup, a ConsoleApplication must create a DataModel on run(), no matter what
the setting of isOpenDataOnNew() is. This is because a ConsoleApplication always has a view; the
ConsoleView, and there must be a corresponding DataModel.

The developer, then, may wish to control what the initial data should be. Without modification the
following scenario takes place:

1) If files are found on the CommandLine, they will be loaded, and the first FileDataModel will be set
as the focused DataModel. Text files are supported by default. The developer may want to add
FileFormats as appropriate to the FileDataModelFactory.

2) If no files are found on the CommandLine, or the files are unsuccessful in loading, a
BasicDataModel will be created, unless a DataModelFactory or DataModel class where provided in
a constructor.

DataModelFactory objects can be added and removed as necessary, but when run () is called, there
must be at least one DataModelFactory that can successfully produce a DataModel, or an Exception will
be thrown.

If there are no data requirements, then nothing needs to be done. The DataModel is passive unless a
command is directed to use it. Of coarse you can define your own DataModel and prepare it as
appropriate in the newData() method.

COPYRIGHT © 2002 - 2011 J IDE SOFTWARE, INC. A LL R IGHTS RESERVED

109

CommandMap
A ConsoleApplication is “command-driven”. The Console is always in the state of executing a

command while it is running. Commands are facilitated by a special purpose ApplicationAction called
ConsoleCommand.

ConsoleCommands are used to drive user interaction in the console and perform functionality.
ConsoleCommands are maintained in the application ActionMap. However, ConsoleApplication is only
compatible with ConsoleCommands. It ignores other Action types.

A ConsoleApplication has a CommandMap. CommandMap manages keyword to Action relationships.
Command line keywords are mapped to keys in the application’s ActionMap. When a user submits a
command from the console, ConsoleView will use it to lookup the ConsoleCommand Action to execute.
Hence, ConsoleCommands are only “exposed” to the console if they have a mapping in the
CommandMap.

To add a ConsoleCommand to the ConsoleApplication you use one of these signatures:

public void putCommand(String, String, ConsoleCommand);
public void putCommand(String, ConsoleCommand);

Both methods will add the ConsoleCommand to the ActionMap. The first method allows the command
keyword, action key, and console command to be provided in one fell swoop. The second method will use
the same value for the CommandMap and action map when adding the ConsoleCommand.

ConsoleCommands
A ConsoleApplication is command-driven. It must always have a command to execute. This keeps the

application running. The developer can set the “start” command from the ConsoleApplication constructor.
ConsoleApplication always maintains the notion of a “next” command. When a ConsoleCommand is
finished executing, the application will use the next command to locate the next ConsoleCommand to
execute. ConsoleApplication tracks the “previous” command as well.

Built-In Commands

ConsoleApplication is pre-configured with built-in commands. The commands below are available
upon construction:

Command Class Comments

exit ExitCommand Exits the ConsoleApplication

help HelpCommand Executes ConsoleHelpService

dir, ls DirectoryCommand Lists the files an directories in the current

COPYRIGHT © 2002 - 2011 J IDE SOFTWARE, INC. A LL R IGHTS RESERVED

110

Command Class Comments

directory

cd ChangeDirectoryCommand Views and sets the current directory for file
handling

open OpenCommand Loads a file defined by the argument

close CloseCommand Disposes and removes the named DataModel
from the application

new NewCommand Creates new data

save SaveCommand Stores the data to a file.

print PrintCommand Prints the focused DataModel

display DisplayCommand Lists data models resident in the application
and their data

select SelectCommand Sets the named DataModel as the focused
model

These commands can be easily removed with a call to uninstallDefaultCommands(). The intent of
these built-in commands is to facilitate basic operations such as data management, help, printing and
termination. Try running a ConsoleApplication and experimenting with these commands. Type “help” to
view information on command usage.

Any built-in commands can be removed if the functionality is not desired. Or they can be remapped to
a command more appropriate to the application. Use removeCommandMapping() to remove just the
command mapping. The actual ConsoleCommand remains in the ActionMap and can be remapped using
addCommandMapping(). The removeCommand() method will remove both the command mapping and
the corresponding ConsoleCommand. We don’t recommend removing the exit command.

Please, do not remove the idle command. It is used internally and not mapped. If it is removed from
the ActionMap, unpredictable behavior may result.

It should be noted that the IdleCommand can be replaced with an alternative ConsoleCommand. This
is a useful technique; set a “menu” command as the idle command. That way, unless a command sets the
next command, the application always returns to idle command, which is your menu command. Easier
still, you can set a prompt into the existing IdleCommand to serve as a default menu prompt. By default
there is an empty prompt.

COPYRIGHT © 2002 - 2011 J IDE SOFTWARE, INC. A LL R IGHTS RESERVED

111

Finally, the DelegatingComand is a convenience class that delegates its actionPerformed() method to
another class, such as the ConsoleApplication or some other target. This reduces the number of
ConsoleCommand classes that need to be defined.

Creating ConsoleCommands

As an ApplicationAction, ConsoleCommand is very straightforward to implement; simply subclass and
implement the actionPerformed() method. Alternatively, you may implement a synonym for this method
with the same arguments signature as actionPerformed() in another class and use the
DelegatingCommand to call it. Either way, following is a discussion of how ConsoleCommands are used in
a ConsoleApplication.

ConsoleView displays the text from the ConsoleCommand via getPrompt() when the command is
executed. The value is actually stored in the Action.NAME property of the ConsoleCommand but is
accessed with the getPrompt() and setPrompt() methods. Normally, the cursor is placed at the end of the
prompt. To make a new line occur after the prompt, use setUseNewLine(true).

When the user responds to the prompt by hitting enter in their console, the actionPerformed()
method of that ConsoleCommand is called. In this way each ConsoleCommand represents a single “dialog”
with the user.

A ConsoleCommand can have a null prompt, in which case no output is sent, and the
actionPerformed() method is called immediately. This is useful for “function-only” commands.

Hence, the actionPerformed() method contains the application logic of the command. It should
generally do the following:

1) Use one of the read() methods from ConsoleView to get the user’s input. The ConsoleView can be
accessed directly in the ConsoleCommand via getConsole().

2) Perform some action, such as operations on the focused DataModel or application, or write some
output to the ConsoleView. The focused DataModel is available using getFocusedDataModel().
The ConsoleApplication object is available via getApplication().

3) Finally, set the next command to execute. This is done by calling the setNextCommand() method.
The command is a String matching a command registered in the CommandMap.

Setting the next command is important! If the next command is not set ConsoleView will revert to the
IdleCommand. This could be convenient if the user’s input was not acceptable, but in general the
developer should set the next command to control the application flow. If you desire for the
ConsoleCommand to execute repeatedly, then set the setRepeatable(true). This is not recommended as it
is easy to get into an infinite loop. To break the loop set the next command other than the current one.

COPYRIGHT © 2002 - 2011 J IDE SOFTWARE, INC. A LL R IGHTS RESERVED

112

To set the next command to the previous command, use the ConsoleCommand method
resetCommand (). This resets the command to the command before the current command was executed.
This is a useful reusability technique. It allows ConsoleCommands to be created or used which perform a
task, and then return to the caller, anonymously. Keep in mind; if the next command is not recognizable,
the IdleCommand is used.

Command Arguments

A ConsoleCommand can accept arguments. These are simply captured from the ConsoleView input
when the ConsoleCommand is called. The ActionEvent passed to the actionPerformed() method will
contain the entire console command that was used, in its ACTION_COMMAND_KEY property. The
getArguments(ActionEvent) method can be used to extract these arguments as a CommandString.
CommandString provides a robust means by which to extract argument values.

File Handling
ConsoleApplication provides means to open, close, and save file data. ConsoleApplication remembers

the last directory used by the user when managing files with the file commands. The
ChangeDirectoryCommand and DirectoryCommand simulate popular shell syntax for browsing directories
on the file system, so that file data can be saved and loaded conveniently.

ConsoleApplication has an integrated FileSystemMediator object which provides the robust file
validation capabilities. Each ConsoleView is a FileSystemResponseHandler, so the ConsoleView can
automatically respond to file system validation issues and negotiate textual dialogs with the user as
required.

See the sub-section on File System Mediation in the “Making a Document-Centric Application” section
for more information on this feature.

ConsoleViewFactory
A ConsoleApplication is preconfigured with a ConsoleViewFactory, which vends a ConsoleView for

each DataModel, no matter what the type. Only a ConsoleViewFactory should be used in the
ConsoleApplication, but the developer may subclass the ConsoleViewFactory in order to deliver a subclass
of the ConsoleView. The constructors of ConsoleApplication make this straightforward by accepting a
ConsoleViewFactory as input.

While providing a ConsoleView alternative is not likely to be necessary, one possible scenario might be
to redirect the ConsoleView I/O. A ConsoleView constructor allows for these streams to be defined. By
default, the ConsoleView I/O are System.in and System.out.

COPYRIGHT © 2002 - 2011 J IDE SOFTWARE, INC. A LL R IGHTS RESERVED

113

Using ConsoleView
 ConsoleView is a virtual interface to the OS native console (Java console). Beyond being an input

and output device for the application, it is also the command dispatcher. Command dispatching is
automatic, however. Normally, the developer need only be concerned with reading and writing with the
ConsoleView.

Reading from the Console

ConsoleView makes getting input from the user very simple. It features type-blocked read methods,
uses a powerful string parser called CommandString, and uses the JIDE ObjectConverter API for pluggable
control of string to object conversion.

The following read methods are available:

• readString()
• readInt()
• readChar()
• readLetter()
• readLetterUpper()
• readLetterLower()
• readLong()
• readDouble()
• readObject(Class)
• readInput()
• readResponse()

These methods block until the appropriate data is input by the user. Meaning, the read method will
not return, and the last prompt will repeat until the requested type of data is input properly.

The int, char, long, double, and letter read methods are self-explanatory. They return the respective
primitive types.

The readObject(Class) method blocks until an Object of the given Class type can be retuned. The
readObject(Class) method relies on ObjectConverters to convert a String to an Object. If the
ObjectConverterManager.initDefaultConverter() has been called, all of the default JIDE ObjectConverters
will be available. Otherwise, the developer should register the desired ObjectConverter with the
ObjectConverterManager. ConsoleView is a ConverterContextSupport object, so if necessary, set the
ConsoleView with your ConverterContext. The ConsoleView’s ConverterContext is null by default.

COPYRIGHT © 2002 - 2011 J IDE SOFTWARE, INC. A LL R IGHTS RESERVED

114

Both readString() and readInput() will return if there is at least one character on the input stream. The
difference between them is that one returns the raw String value, the other parses the String and returns
it as a CommandString object. CommandString provides a robust means of validating and parsing the
input, which could contain user arguments.

Console Dialogs

The readResponse() method provides for controlling program flow via user input. This method
implements the console analogy to a GUI option dialog. It provides a question with a defined set of
response codes. This method is very convenient for branching in a ConsoleCommand. For example, during
a ConsoleCommand’s actionPerformed method, this method can be called when the next command is
based on a user’s confirmation.

There are two signatures for these methods:

The readResponse(String, int) method provides for a question and option type. Option type is a
constant defined by JDAFConstants class; OK_CANCEL_DIALOG, YES_NO_DIALOG, or
YES_NO_CANCEL_DIALOG. The return is an int corresponding to one of JDAFConstants response codes
RESPONSE_YES, RESPONSE_NO, or RESPONSE_CANCEL.

As an example, consider the following code:

public void actionPerformed(ActionEvent e) {
 // evaluate some answer
int response = getConsole().readResponse(“Do you want to continue?”,
 DialogConstants.YES_NO_OPTION);
 if(response == DialogConstants.RESPONSE_YES) {
 setNextCommand(“question”);
 }
 else {
 setNextCommand(“menu”);
 }
}

In this example, the output will read:

Do you want to continue? (Yes/No)
The readResponse() method blocks until something interpretable11 as a “Yes” or “No” is input. The

response is translated to a response code which can be used to make branching decisions.

11 The Console method translatePromptResponse() is used to interpret the String response to a question. The values that are
accepted are lenient and case insensitive. For example if (Yes/No) is the hint, RESPONSE_YES will be returned if the value is y, Y,
Yes, YES, yes, OK, ok.. These values are localized and can be replaced and internationalized by changing the resource files.

COPYRIGHT © 2002 - 2011 J IDE SOFTWARE, INC. A LL R IGHTS RESERVED

115

The readResponse(String, Object, int) method is similar to the previous method, but provides for a
parameterized question using an internal Format object. If an Array is input, MessageFormat is used,
otherwise ObjectFormat is used.

Writing to the Console

All output to the Java console must be directed through the ConsoleView object for the application to
work properly. While writing to the Java console directly is trivial, a ConsoleView provides many features
that make this requirement not only convenient, but decidedly more beneficial.

Much output is automated, because ConsoleView, by design, writes the NAME property value of the
executing ConsoleCommand as the command prompt. Output, however, may be written at any time,
usually during a ConsoleCommand’s actionPerformed method. ConsoleView keeps track of all output with
close attention to line breaks and such, so that that display integrity is maintained with all I/O traffic. For
example, the isNewLine() method can be called to determine if the next output character will be at the
beginning of a new line.

The following write methods are available:

• write(Object)
• writeLine(Object)
• write(String, Object)
• writeLine(String, Object)
• writeTable(TableModel, Map);

The ConsoleView write methods come in two flavors, write(), which appends to the current line, and
writeLine(), which appends to the current line and adds a new line afterwards.

The write(Object) and writeLine(Object) methods take a String or any other Object. If the argument is
A String.class, it is written verbatim. Other types use ObjectConverters to perform Object-to-String
conversion. If an ObjectConverter cannot be found for the Object’s Class, the Object’s toString() method is
called.

 The write(String, Object) and writeLine(String, Object) methods provide for parameterized output
using a Format class. If the Object is an array, it is passed through the ObjectConverters. This behavior can
be switched off using setUseConvertersOnOutput(false). MessageFormat is then used to construct the final
output. Otherwise, ObjectFormat is used.

 The writeTable(TableModel, Map) method will write a TableModel’s data to the console. Data
values will pass through the ObjectConverts as well. This behavior can be switched off using

COPYRIGHT © 2002 - 2011 J IDE SOFTWARE, INC. A LL R IGHTS RESERVED

116

setUseConvertersOnOutput(false). Strings are output verbatim in any case. Table layout can be controlled
by passing in a Map of properties. See javadoc for details.

ConsoleFilter

A ConsoleView can have one or more ConsoleFilter objects. A ConsoleFilter is used to filter input and
output to and from a ConsoleView. If more than one ConsoleFilter is added, the respective input and
output will be passed through each filter in the order the filters where added. ConsoleFilter is an interface
with the following methods:

public String filterInput(String input, String command);
public String filterOutput(String output, String command, boolean newLine);

 A ConsoleFilter can have many uses, for example, it could be used to extract useful information
from the output generated by an ExternalCommand process. Or, all output could be formatted with a
special prefix, such as a terminal emulator “>” character. The uses are up to the developer, but this facility
provides an easy way to work at a low level with the ConsoleView I/O without subclassing ConsoleView.

ConsoleViewListener
For every DataModel created, a ConsoleView is also created. While physically there is a single Java

console, internally there is a virtual ConsoleView for each unique DataModel. When a DataModel is
focused, its respective ConsoleView will be activated and all I/O will go through that ConsoleView
instance. While normally this is an uninteresting implementation detail, there are times when knowing the
whereabouts of a particular ConsoleView instance is desirable; for example to set properties on a
ConsoleView, or some other task.

To this end the developer can register a ConsoleViewListener with the ConsoleApplication using
addConsoleViewListener(). A ConsoleViewListener can receive the following events:

• consoleActivated()

• consoleDeactivated()

CommandString
CommandString is a powerful utility class used by the Console Application API. It provides pattern

validation and advanced type parsing capabilities, providing a greatly simplified means of working with
command line Strings.

Creating a CommandString is simple and inexpensive:

CommandString commandString = new CommandString(commands);

COPYRIGHT © 2002 - 2011 J IDE SOFTWARE, INC. A LL R IGHTS RESERVED

117

CommandString separates a String into command elements using white space. To include white space
in a command element, double-quotes are required to define the element bounds. CommandString is
mutable. It can be reused by calling parseCommands(String).

 CommandString can reconstitute the original string or a portion of the command string using
toString() or substring(). It can also return the parsed command array in full or by range, using
getCommands() and getCommands(int, int). The later is convenient for making another sub
CommandString.

Command Validation

Once a CommandString is created, the number of command elements can be counted using length().
CommandString provides a very simple way to validate the type potentiality of elements by using Class
patterns. The validate() methods accept Classes and positional information and one uses RegEx. There are
four signatures:

• validate(Class, int)
• validate(Object[])
• validate(Object[], int, int)
• validate(String, int)

The first method returns whether the nth command element can be parsed to the given type. The
second method compares each element in the input list to each element in the internal command element
list. If the input element is a Class, the conversion potential of the corresponding element is checked. If
the input is a String, equals() and match() are used to compare the corresponding command element. The
third method provides the same functionality but by a range of command elements. The last method uses
a regular expression to explicitly test the nth command element.

Single and mixed switches can also be detected using isSwitch(). A single command can be validated
position ally using indexOf(command).

Type Conversion

CommandString uses the ObjectConverter API to perform conversion and validation. The developer
should provide ObjectConverters for any types needing conversion. CommandString is a
ConverterContextSupport object as well, and can be set with a ConverterContext to target a particular set
of ObjectConverters.

CommandString provides many primitive typed access methods such as getInt(int), getLong(int),
getDouble(int), and a special getList(int, String) which provides for a separator to extract a single element

COPYRIGHT © 2002 - 2011 J IDE SOFTWARE, INC. A LL R IGHTS RESERVED

118

as an array. The getObject(int, Class) method will attempt to parse the nth element to the given type using
an ObjectConverter.

Console Help
ConsoleApplication already comes with a system that makes integrating new help almost automatic.

ConsoleApplication contains a HelpSource implementation called ConsoleHelp. ConsoleHelp runs through
every command in the command map and prints a neatly justified table of each command and the
description from the ConsoleCommand. Hence, implementing a common help system found in shell and
other console applications.

For each custom ConsoleCommand the developer can provide a help String using setHelp(). This String
should be short and to the point, including any information concerning arguments to the command. The
help String is stored in the Action.SHORT_DESCRIPTION property of the Action. The ConsoleCommand
methods setHelp() and getHelp() use this property internally.

HelpCommand is built-in to ConsoleApplication. It is mapped to the command “help”. Because there
are quite a few built-in commands, seeing help in action is simple; create and run a ConsoleApplication,
then type “help” to see a listing of all the loaded commands.

Of course there is nothing stopping the developer from providing a custom HelpSource. The
HelpCommand can still be used to invoke it.

Console Printing
Printing in a ConsoleApplication is identical to printing in a GUIApplication. But, instead of invoking the

Printer from the File Menu’s Actions, printing is invoked using the PrintCommand, which is mapped under
the command “print”.

ConsoleView already implements PageableSource. In order to provide printing, set a Pageable object
in the ConsoleView.

ConsoleApplication - About
Oddly, the last thing we mention is the first thing that happens when you run a ConsoleApplication.

When a ConsoleApplication runs, it internally fires an AboutCommand. The AboutCommand is in the
ActionMap but not mapped as a command. It provides a simple prompt that introduces the program. The
prompt is composed by using the application name and the version String.

To change this about introduction prompt, simply access the AboutCommand from the ActionMap
using AboutCommand.KEY, and set the prompt to whatever the desired introduction should be.

COPYRIGHT © 2002 - 2011 J IDE SOFTWARE, INC. A LL R IGHTS RESERVED

119

ObjectFormat
You may encounter in various places in the framework an object called ObjectFormat. While

ObjectFormat is not specifically desktop application related, like ObjectConverters have general utility, we
rely on ObjectFormat quite often, especially when formatting resource Strings. Once you understand
ObjectFormat, you may wish to use it as well.

ObjectFormat is like a mini-template engine. It provides a means of producing a parsed information
from an Object in language-neutral way using a String pattern. This object can be used to construct Strings
to display to end users based on source information. ObjectFormat takes a source object and a String
pattern, extracts and formats information from the source object, then inserts the information into the
pattern at the appropriate places.

ObjectFormat is not a java.text.Format subclass, as it does not provide the contract to turn a String
back into an Object. It is also not concerned with locale-sensitive issues like NumberFormat. However, it is
used in a similar manner to MessageFormat. In fact it can replace MessageFormat, as it leverages much
more readable pattern strings, which is more conducive to translation activities. It also makes formatting
in your application more readable and maintainable.

ObjectFormat can be used as an instance:
String pattern = // String pattern
Object sourceObject = // object
String result = new ObjectFormat(pattern).format(sourceObject);

 Or statically:

 String result = ObjectFormat.format(pattern, sourceObject);

To extract information from a source object, ObjectFormat uses a very simple expression language

using UL syntax (Universal Expression Language) in the form:
 ${property}
The property is interpreted as a bean method against the source object. For example, if the source

object is Car, having a method getColor(), a pattern with the token ${color} would cause the value of
Car.getColor() to replace occurrences of the token. Nested method execution can be accomplished by dot-
separating property names. For example, the token ${color.blue} would substitute the token with the
value resulting from Car.getColor().getBlue(). If a source object is a java.util.Map implementation, the
property is used as the key into the Map.get() call, otherwise, the nested properties are used to make
method calls to each object in the call chain. In fact, any accessible zero-argument method can be used in
the token call chain that produces a value.

COPYRIGHT © 2002 - 2011 J IDE SOFTWARE, INC. A LL R IGHTS RESERVED

120

FORMATTING MESSAGES
The EL-syntax can be extended to include a format pattern that is compatible with MessageFormat. If

the property resolves to an Array or Collection, the values are used as input to the MessageFormat
pattern. Otherwise, the value is presented singularly. The MessageFormat pattern is placed after the
property, separated with a comma. For example:

 ${color, The car is {0}}
At first this looks trivial. After all, this could be accomplished more readably using ObjectFormat

syntax like so:
 The car is ${color}
However, keep in mind that all the value formatting power of MessageFormat is available, including

the use of ChoiceFormat, since ChoiceFormat features are interpretable in MessageFormat patterns.
Consider that the Car class has a getMileage() method. Now consider the following ObjectFormat pattern:

 The mileage is ${mileage, {0,choice,0#low|90000.0#high}}
This would yield a String "The mileage is low" or "The mileage is high" depending on the value of

getMileage()

If the property is a boolean and a MessageFormat pattern is provided using a ChoiceFormat sub-
pattern with the ranges 0 to 1, the boolean result will be converted to false=0 or true=1. This allows for
simple in-line if/else logic to be embedded in the resulting String. Let our Car have a boolean method
isAvailable().

 The car ${available, {0,choice,0#is|1#is not}} available.
This pattern could yield the String; "The car is available" or "the car is not available".

Finally, the values inside the MessageFormat pattern can also contain UL-syntax to further
parameterize the MessageFormat pattern String.

Note: If a token in the pattern expression cannot be interpreted, due to syntax error or any other
exceptions, the token will remain in the String pattern.

Implementing Custom Pattern Syntax
EL-syntax is not the only way ObjectFormat can parse information. Let us describe how ObjectFormat

resolves a pattern. To resolve a pattern, ObjectFormat uses one or more ObjectFormatToken objects. (In
fact, the UL-syntax is facilitated by instances of the inner ELFormatToken classes.)

Each ObjectFormatToken is responsible for extracting information from a source Object, based on the
presence of its representative token in the pattern. Thus, user-defined tokens in a given pattern use a
corresponding ObjectFormatToken class to interpret their value.

COPYRIGHT © 2002 - 2011 J IDE SOFTWARE, INC. A LL R IGHTS RESERVED

121

 To provide a custom token interpretation, the developer subclasses ObjectFormatToken and
instantiates it with the representative token String to be replaced in a pattern. Then the
getSubstitution(Object source) method should be implemented to return the replacement value. This
expandability allows both EL-interpretation overrides and a mix of token interpretation styles, even the
implementation of a completely custom token syntax.

To facilitate custom pattern syntax, ObjectFormat is used like so:
String pattern = // String pattern
Object sourceObject = // object
ObjectFormatToken[] tokens = // define token interpreters
String result = new ObjectFormat(pattern, tokens).format(sourceObject);

 Or statically:

 String result = ObjectFormat.format(pattern, tokens, sourceObject);

Migrating To JIDE Desktop Application Framework
Whether one has a finished desktop application, is planning to start a new application, or is in the

middle of development, there are many reasons that may justify migrating to JDAF:

1. To obtain the benefits of the data and file handling.

2. To tame an “at risk” architecture and produce a more maintainable application

3. To gain the benefits of the managed UI harness and its OS integration features

4. To offset existing developer liability by placing a large portion of the application architecture onto
a supported product

There are other possible motivations, but whatever the reason, we want to make your migration as
easy as we can.

Desktop Application migration is a wieldy topic because the possible architectures to be migrated are
numerous12. We will attempt to outline what would need to be done to migrate by assuming some
common designs that many applications end up implementing. In any event, please read this document
thoroughly before attempting a migration.

12 We are not speaking of console applications here, but primarily GUI applications. Likely migrating a console application is not
a predominate concern. If we’re wrong, let us know!

COPYRIGHT © 2002 - 2011 J IDE SOFTWARE, INC. A LL R IGHTS RESERVED

122

AWT and SWT Applications
During the design of this framework, we had to make certain decisions about GUI support; supporting

AWT, Swing and SWT where concerns. While we made some architectural decisions with all toolkits in
mind, ultimately it seemed that the framework would be too abstract to be useable. While possible to
support such frameworks in the future, we decided to use the Swing toolkit due to the advances in Java 5
and 6 and its default availability in J2SE.

Therefore, if your application is in straight AWT or SWT, there may be considerable rework of your
GUI. You will have to decide whether a migration is desirable or feasible for your application. If you
intentionally wish to move to Swing, this is a wonderful way to do it, because the framework minimizes
the Swing code needed to create your application.

The migration procedure from this perspective would be to follow the steps in “Making a GUI
Application” and/or “Making a Document-Centric Application”. The following tips may be useful as a
general roadmap:

• Cull out a data model from your application and find a suitable DataModel to host this data in the
application. If your application is file-based, you should identify or create a FileFormat as opposed
to a DataModel, and use the FileBasedApplication class.

• Re-implement the content of your application windows into DataViewPane subclasses. May we
suggest the use of our other JIDE products to aid in this task, such as JIDE Components, JIDE Grids,
and JIDE Dialogs? These can greatly improve development productivity and presentation.

• Re-implement any menus and toolbar logic by creating and adding Actions to the GUIApplication
ActionMap. You may use GUIApplicationActions if their functionality will benefit you.

• Add MenuBarCustomizers and ToolBarCustomizers and use these Actions to populate menus and
toolbars.

Swing Applications
Swing-based applications tend to lead developers towards GUI-centric design. Often the application

main() method is in a JFrame subclass, which seems to be the center of the application. In this scenario
most application methods sit in the JFrame subclass, perhaps called by Actions, or implemented in
Actions. The application may or may not be using the JFrame as a main window or using JInternalFrames
for content.

A more robust architecture may identify the “application” as the central class, thereby managing the
application methods and GUI separately. An even more robust application may use a “loader” class as the
main entry point; so that the application class-loading is sandboxed and corporate policies can be

COPYRIGHT © 2002 - 2011 J IDE SOFTWARE, INC. A LL R IGHTS RESERVED

123

enforced. In either of these designs, Swing class-loading is preempted to provide a snappier splash screen
or to control other class loading issues such as secure jar loading, updating, license control, etc.

In all cases we can be sure menus and toolbars are constructed using JMenuBar and JToolBar,
normally populated with Actions. The application may or may not support a Splash Screen, Printing, Help,
About Windows, Preferences with Preference Window, data persistance, security, and other various
desktop application needs.

We will attempt to address application migration covering each area.

Application Entry Point
 GUIApplication is intended to facilitate the entire desktop application lifecycle. The GUIApplication

will represent your application in some manner. While it is certainly acceptable or necessary to create
your own DataModels, if you are working with File data, try using a FileFormat and adding the
FileHandlingFeature to the GUIApplication. This facilitates OS-sensitive and robust file support. Note that
this feature has a dramatic effect on the standard File menu. If your application is purely file-based, use
the FileBasedApplication class as it is preloaded with a FileHandlingFeature and has some usability
methods.

 Whether you use your own class as your main() class, and use a GUIApplication instance internally,
or you wish to subclass a GUIApplication and put main() there, is your preference.

If your application is designed with an “application class”, subclassing one of our GUIApplication
classes may be a conceptually easier transition. Move all application methods and fields from your class to
the new GUIApplication subclass. Ultimately you will expire GUI methods for the functionality provided in
GUIApplication.

If your application extends off JFrame, you can do either; make a GUIApplication subclass or make a
general class and use an instance of GUIApplication. Either way, move all non-GUI application methods
from your JFrame class to the new class. Which ever way it is done, our GUIApplication class will be the
focus of the application.

It is important that the GUIApplication instance be instantiated as immediately inside the main
method as possible. Particularly before any Swing resources are engaged.

GUIApplication ensures that the UI is started on the Swing event thread.

COPYRIGHT © 2002 - 2011 J IDE SOFTWARE, INC. A LL R IGHTS RESERVED

124

Migrating Data
If your application acknowledges data as a single Java object but does not require persistence, then

wrapping your data in a BasicDataModel implementation is straightforward. Use a BasicDataModelFactory
and use a DataModelListener to manually introduce your data using setData() during the
DATAMODEL_INITIALIZED event. GUIApplication should be used in this case.

If your application uses files, then we recommend using FileBasedApplication. If you need to mix
models (view both files and data from other sources), you may use a GUIApplication and install the
FileHandlingFeature object. In either case, provide the appropriate FileFormat objects for your data. If we
do not supply an appropriate FileFormat class, subclass FileFormat and implement the readData() and
writeData() methods, and provide the appropriate file extension.

If your data is managed from a database13, we currently recommend subclassing AbstractDataModel
or BasicDataModel and setting up a data access layer in the init() method. The data lifecycle methods can
be implemented such as newData(), openData(), saveData(), resetData(), closeData(), etc, to interface
with the database. The NewAction criteria or another GUIApplicationAction could be set with a query
string or a connection string so that a ResultSet could be loaded, creating data for the application. A
DataModelFactory should be used to vend the new DataModel in response to a query string or some
other data source, such as a Connection object. The data property could house a ResultSet, data from a
ResultSet, or a Connection object that is queried each time the DataView requests it. There is plenty of
flexibility and it can depend on how your UI is structured.

Just keep in mind, your UI will have access to the DataModel, which has a data property. But you may
use DataModel however it is most convenient.

Setting Look and Feel
JDAF Managed UI sets the Swing Look and Feel automatically. Unless there is a strong motivation,

such as corporate branding, we recommend respecting the native look and feel of the platform for the
best integration with the OS. If we don’t currently have a specific Application UI for a particular OS, the
Java Cross-Platform Application UI is used, which defaults to the “Metal Look and Feel”. If this is not
acceptable, by all means replace the look and feel.

You will need to turn off the setting in the ApplicationUIManager by calling setSetsLookAndFeel(false),
or it will override your setting when run() is called.

13 We plan to provide a legitimate JDBC-based DataModel implementation in the future.

COPYRIGHT © 2002 - 2011 J IDE SOFTWARE, INC. A LL R IGHTS RESERVED

125

Migrating Window Code
GUIApplication manages all document-windows automatically. Hence, your window’s content will

need to be migrated to a DataView, likely a subclass of DataViewPane. Your code is probably in the
content pane of a JFrame or JInternalFrame. Basically, you should be able to copy the code that adds
Components to the content pane, and paste it in the initializeComponents() method of a DataViewPane
subclass.

When the DataModel is introduced, your DataView class will be created and presented. You can use
the updateDataView() method to set the state of your Components to reflect the DataModel, and use
updateDataModel() to update the DataModel to reflect the values of the GUI. The only challenge here is if
the code used to add your components is the same code used to populate the components. If you
separate this behavior you may find that it generally makes the application more maintainable. By the
same token, there may be circumstances where this is not possible. Please feel free to put all the code in
the updateDataView() method, but just know that this method will be called each time the view needs to
be refreshed.

If there is any code that manipulated the window consider these possible solutions:

• If you have an application icon set in the frame, please supply this icon to the
ApplicationUIManager object using its setSmallIcon() or setLargeIcon() methods. The
ApplicationUIManager is available from the GUIApplication.

• If your application is a single-window application, call the GUIApplication method
setAllowsMultipleOpens(false). You can also remove various menu items if certain behavior such
as Close and New are not appropriate. You may use showNewDataOnRun(true) to open the
window at startup. This is normal behavior by default.

• If you are setting the window to a specific size, move that Dimension to the DataView
initializeComponents() method in a call to setPreferredSize(). The hosting window will use pack().
Alternately, you may set the size for all windows in the ApplicationWindowsUI using
setPreferredWindowSize().

• If your application maximizes windows on startup, get the ApplicationUIManager from the
GUIApplication, then get the ApplicationWindowsUI via getWindowsUI(), and call
setMaximizeWindows(true). We recommend that this be done on an OS by OS basis using an
OSApplicationCustomizer. Particularly for platforms such as Mac OS X where users may have very
large screens. A maximized window on a 32” Cinema display can be unnerving, unless you are
convinced this is appropriate for your application. If you set both the preferredSize in the
DataView and selectively set the maximize setting in the ApplicationWindowsUI, your application
should behave appropriately on all platforms. You may also choose not to maximize, but to use

COPYRIGHT © 2002 - 2011 J IDE SOFTWARE, INC. A LL R IGHTS RESERVED

126

the ApplicationWindowsUI method getPreferredMaximumSize() which returns a size that is safe
on each platform.

• If you are using the JIDE Docking Framework, JDAF will handle the low level details of creating the
DockableHolder and DockingManager automatically, per window. Before run() simply access the
ApplicationUIManager from the GUIApplication and call setUseJIDEDockingFramework(true). If
you manage your own persistence canll setManageLayoutPersiatance(false). Then setup your
DockableFrames in the customizeWindow() method of a WindowCustomizer. You can persist your
layout in the disposingWindow() method. You can cast the window to a DockableHolder, from
which you can obtain the DockingManager. An alternative is to use the
DockingApplicationFeature.

• Finally, if there are any other important windows settings, you can use a WindowCustomizer. Just
keep in mind that different platforms will use different window classes; either JFrame or
JInternalFrame. So type-safe your code appropriately.

Migrating Actions
GUIApplication has an ActionMap. We recommend that you add all of your Actions to this ActionMap

under standardized keys, prior to a call to run(). This likely will be an extra step if your
Action/ActionListener code is coupled to your menu building code via inner classes. If so, just add the
inner-class Actions to the application’s ActionMap instead of the JMenus or JToolbars. We strongly
recommend this step as menus and toolbars will rely on this organization.

Secondarily, consider changing your Actions to extend from GUIApplicationAction, as opposed to
AbstractAction where you think you could benefit from the actionPerformedDetatched(), and thereby gain
a much snappier user interface.

To ensure there is no functional overlap; please see the Actions listed previously in this document. You
can expire any of your Actions if we have covered that functionality. This is especially true of file handling.

Alternately you can replace any of the standard Actions. If you use the same ActionMap key (found in
the ActionKeys class) your Action will assume the platform properties for the Action of that kind, including
name, accelerators, and Icons.

For your Action icons, you can replace our icons. The default Actions are available after the
GUIApplication is constructed. This can either be done using the Resource bundles or using an IconTheme
(See “Working with Icons”), or just manually as needed.

The next two sections are about menus and toolbars. Be sure to check out the
AutoInstallActionsFeature as this lets your define Action properties in such as way that the Acton will self-
install into menus and toolbars without writing any menu or toolbar code.

COPYRIGHT © 2002 - 2011 J IDE SOFTWARE, INC. A LL R IGHTS RESERVED

127

Migrating Menu Code
GUIApplication manages menubars automatically. The benefit is the provision of OS- recommended

menu configurations, which make for an intuitive and integrated application on each given platform.

You should build the menu items using Actions from the ActionMap, as this provides a way of
customizing the menu item remotely without having to access the menuing system, which may include
multiple menubars, and whose menu items may be configured in different ways.

The framework provides the four most common application menus; File, Edit, Window, and Help. If
you have implemented these menus in anyway, please audit against what we provide, and retire any
duplications.

You configure menus by adding a MenuBarCustomizer. Keep in mind that the framework manages the
Menu Bars. If you are using XML or some other menu configuration method, you may be able to migrate
this code to a MenuBarCustomizer.

The framework-provided standard menus will be passed into the customizeStandardMenus() method.
Use MenuGroups to add Actions to the standard menus that are not already there. MenuGroup
represents a span in a JMenu where user items should go according to OS-guidelines.

To access a MenuGroup use the ApplicationMenuBarsUI method getMenuGroup(string, menu)
method with the desired MenuGrouping constant and input menu.

To add other application menus, implement the createApplicationMenus(ApplicationMenuBarsUI).
Create your menus here and return them. They will be placed in the menu bar in the guidelines
recommended manner. When creating menus, the ApplicationMenuBarsUI object should be used. You can
add items to the standard menus using addMenuItem(). Actions can be accessed using
getAction(actionKey). Use the factory methods defaultMenu(String) and defaultMenuItem(Action) to
create the menus and items. This makes sure that the ApplicationMenuBarsUI can vend the most
appropriate Component.

If you show icons in your application, be sure to set setShowIcons(true) in the Application-MenuBarsUI
object. You can repress icons in the menus by setting this property to false.

Alternatively, you may use the AutoInstallActionsFeature, which allows Actions to be installed into
menus automatically just by setting a few properties.

Migrating ToolBar Code
GUIApplication manages all toolbars automatically. The benefit is the provision of OS- recommended

toolbar configurations, which make for an intuitive and integrated application on each given platform. The
framework provides one toolbar called the “Standard” toolbar. If you have implemented toolbars please
audit against what we provide, and retire any duplications.

COPYRIGHT © 2002 - 2011 J IDE SOFTWARE, INC. A LL R IGHTS RESERVED

128

You configure toolbars by adding a ToolBarCustomizer. The ToolBarCustomizer wants to know the
names of all your toolbars via getTooBarNames(). If they don’t have a name, you will need to supply them.
The “standard” toolbar will be passed into the customizeStandardToolbars() method. To add Actions that
are not already in the toolbar, use the input Container. In the createApplicationToolBar() method you will
be asked to provide a toolbar for each name you returned from getTooBarNames().

When creating toolbars, the ApplicationToolBarsUI object should be used. Actions can be accessed
using getAction(actionKey). Use the factory methods defaultToolBar(String) and defaultButton(Action) or
addToolBarButton() to create the components. This makes sure that the ApplicationToolBarsUI can vend
the most appropriate Component.

If you are using the JIDE Action Framework, JDAF will do the low level integration automatically. Just
set the ApplicationUIManager method setUseJIDEActionFramework(true). If you use the factory methods
as prescribed above to create toolbar items, there is no further work needed. If you need to access the
DockableBarManager, you just access the window using the ApplicationWindowsUI object
getWindow(DataView), and cast it to a DockableBarHolder, then access the DockableBarManager. This is
generally done inside a DataViewListener, where the Window can be accessed directly from the
DataViewEvent.

Alternatively, you may use the AutoInstallActionsFeature, which allows Actions to be installed into
toolbars automatically just by setting a few properties.

Migrating Printing Code
Printing in JDAF is facilitated by the Printer. Printer provides the printing infrastructure for a

DesktopApplication. A Java Printing API Pageable provides the printing layout/rendering. Therefore it
should be straightforward to move your printing code to the Printer.

What may take more thought is how the Pageable is delivered. The DataViewPane, where your GUI
was migrated, to is a PrintSource. A PrintSource is chiefly concerned with delivering a Pageable instance.
Therefore when the PrintAction is executed, the GUIApplication checks the front-most DataView for a
Pageable. Hence, to get your Pageable to the Printer, override/implement the DataViewPane
getPageable() method. If null is returned, the Print actions are disabled. Alternately you can set the Printer
disabled using the Printer method setEnabled(false).

If the PrintSource system will not work, simply create your own Print action and set it under the
ActionKeys.PRINT. It will assume the platform-specific formatting of a Print menu item.

Migrating the Help System
If you have a help system, likely it has a menu item that invokes it. GUIApplication provides help via

setting a HelpSource implementation into the application via setHelp(HelpSource). You can use this
interface to wrap and invoke your help system.

COPYRIGHT © 2002 - 2011 J IDE SOFTWARE, INC. A LL R IGHTS RESERVED

129

If you have a single help menu item, you are done. The UI handles it. If your help menu has more than
one help command, we recommend you add a HelpAction for each additional help command into the
application ActionMap. For each HelpAction provide a hint via setHelpTopic(String). This will be passed to
your HelpSource implementation. Then in the MenuBarCustomizer, in the customizeStandardMenus()
method, when the MenuConstants.HELP_MENU_ID is passed in, add the HelpActions to the
HELP_HELP_GROUP_ID MenuGroup.

If you have help topics attached windows, set the topic in a client property of the DataView
components with the key HelpSource.HELP_HINT_PROPERTY_NAME.

Migrating Preferences
Migrating preferences is a bit tricky. DesktopApplication uses the Java Preferences API. You can simply

use Preferences node returned from getPreferences(). However, there is no heavy enforcement of a
Preferences mechanism.

If you are already using the Preferences API, we recommend that you continue using it in the way you
are using it now, and ignore our Preferences node, unless you want to go through the trouble of migrating
the values to the application Preferences node.

If you are managing preferences via a Properties object, you should continue to do so, unless you
want to go through the trouble of migrating the values to our Preferences node. One benefit would be to
use the PropertiesFileFormat to load and save your data, and expire your code. DesktopApplication
provides a getDataDirectory() that will return the platform-specific location where such files should be
stored.

GUIApplication does however suggest that if you have a Preferences dialog, you let the application
know by adding is as a queued DialogRequest in the ApplicationDialogsUI using the key:

ApplicationDialogsUI.PREFERENCES_DIALOG_REQUEST_KEY

To use your existing dialog, add a queued CompatibleDialogRequest. If the dialog setup code is in the
calling method, as opposed to the dialog itself, you may need to migrate this code into a dialog subclass.

Additionally, you need to add the PreferencesAction to the GUIApplication’s ActionMap.
application.getActionMap().put(PreferencesAction.KEY, new PreferencesAction());

If you want to fully migrate your preference dialog, consider using the PreferencesDialogRequest
object.

If you want better guidelines capability, you may consider migrating your content to subclass our
PreferencesPane.

COPYRIGHT © 2002 - 2011 J IDE SOFTWARE, INC. A LL R IGHTS RESERVED

130

Migrating About Window
If you have an About dialog, simply let the GUIApplication know by queuing it in the

ApplicationDialogsUI using a CompatibleDialogRequest under the key:
 ApplicationDialogsUI.ABOUT_DIALOG_REQUEST_KEY

This will allow the AboutAction to invoke it.

If the About dialog setup code is in the calling method, as opposed to the dialog itself, you may need
to migrate this code into a dialog subclass.

Migrating Startup and Shutdown Functionality
If you have startup functionality such as splash screens, security checks, license validations, etc., we

recommend moving that code into the applicationOpening() and applicationOpened() events of one or
more ApplicationLifecycleListeners.

If you have shutdown functionality such as saving states, preferences, or general cleanup tasks, use
the applicationClosing() and applicationClosed() events.

Note that it is unnecessary to invoke the GUIApplication.run() on the event thread. GUIApplication
starts up the UI on the event thread internally.

JSR-296 Compatibility
JSR-296 (appFramework) is a java.net community project created to provide an API that addresses the

nominal needs of Swing-based application. JDAF provides a JSR-296 compliancy API for those who are
either migrating from it, or those who wish to use the features provided by it.

This section assumes an understanding of JSR-296.

AppFrameworkApplication facilitates using JDAF as a JSR-296 compliant Application.
AppFrameworkApplication is a JSR-296 Application subclass that wraps a JDAF DesktopApplication
instance. The instance can be accessed via the getJDAFApplication() method.

To use AppFrameworkApplication, subclass it and implement the method
createJDAFApplication(String name) to return a JDAF DesktopApplication as discussed otherwise in this
document. Launch your application in the normal JSR-296 way, using the Application.launch().

AppFrameworkApplication provides the following integration with JSR-296:

• AppFrameworkApplication delegates the JSR-296 startUp() and exit() methods to JDAF methods
run() and exit(), respectively. So it is unnecessary to implement these methods.

• In the spirit of the JSR-296 ExitListeners, AppFrameworkApplication implements the
ApplicationLifecycleListener interface. Simply override the desired methods. Note that JSR-296
ExitListeners will fire before JDAF applicationClosing() method.

COPYRIGHT © 2002 - 2011 J IDE SOFTWARE, INC. A LL R IGHTS RESERVED

131

• AppFrameworkApplication configures a “tuned” Resources object that facilitates the
recommended resource bundle configuration of JSR-296. This instance can be accessed via the
getResources() method. Set up your resource bundles in the JSR-296 manner by creating a
directory called "resources" off your AppFrameworkApplication subclass root package, and
naming the bundle file the same name as your class.

AppFrameworkApplication will read the "Application.name", “Application.vendor” and
"Application.version" properties automatically, and is configured to load icons from that resources
location. In this way you can use both JDAF and/or the JSR-296 methods of resource access.

• The command line is automatically captured. You may use JDAF CommandLine class to access
program arguments.

• Similar to the ApplicationContext.getInstance().getApplication() we provide
AppFrameworkApplication.getApplication() to provide a static handle to JDAF DesktopApplication.

Consider using JDAF DataViewListeners to use JSR-296 features like resource injection. You could also
use the ApplicationLifecycleListener methods to utilize the JSR-296 SessionStorage mechanism.

Note: A JSR-296 implementation is not included in JDAF package, but will be needed to use this
compliancy API. This API was designed to an early 0.42 version of the JSR-296. See Swing Application
Framework for details and downloads of a default JSR-296 implementation.

Internationalization Support
All Strings used in JDAF are contained in properties files throughout the packaging structure. In you

deploying to a non-english speaking locale, please include the 'jide-properties.jar' in your classpath to take
advantage of any existing localization.

Note that we haven't done any localization for JDAF in particular. If you want to support languages
other than English, just extract the properties files, translate them to the language you want, use the
correct locale postfix in the file name, and then jar it back into JDAF jars.

Each properties file is suffixed by an OS variant. This is an extended variant, meaning you can still use
your own variant postfix, just be sure to append the OS extended variant at the end of the file name. In
fact, this extended variant can be added at any locale reduction level, making a resource file OS sensitive
by default, language, language+country, or language+country+variant.

You are welcome to send the translated properties files back to us if you want to share them!

	Table of Contents
	What is JIDE Desktop Application Framework
	An Architectural Framework
	Base Functionality
	Better Desktop Integration

	Exploring JIDE Desktop Application Framework
	DesktopApplication
	ApplicationLifecycleListener
	Application Data

	DataModel
	Data Persistence
	DataModel Implementations
	Data Origination
	Primary and Secondary DataModels
	Monitoring the Data Lifecycle

	DataView
	DataViewFactory

	MVC Flow
	Data Lifecycle

	Printing
	CommandLine
	CommandLine and Object Conversion

	Environment Variables
	Actions
	Threaded Activities
	Creating an Activity
	Activity Progress
	Activity Actions

	Custom Events
	Preferences
	Help
	Versioning
	Vendor
	Localization
	Localizing Basic Application properties
	OS-Extended Variants

	Making A GUI Application
	Application UI Technology
	Application UI Highlights
	Java Cross-Platform Highlights
	GNU/Linux Highlights (Gnome)
	GNU/Linux Highlights (KDE)
	MAC OS X Highlights
	Windows XP Highlights

	GUIApplicationLifecycleListener
	Accessing the Application UI
	Extending an Application UI

	The GUIApplication Class
	Setting the Application Style
	Using Split Application Optional Style
	FramedApplicationFeature

	Setting Fundamental GUIApplication Properties
	Setting the Swing Look and Feel
	Application Data Cycle
	Creating Different DataModels and DataViews

	Managing Models
	Managing Views
	DataViewListener
	Secondary and Auxiliary DataViews

	Window Management
	WindowCustomizer
	ApplicationWindowsUI
	Window Sizing
	Window Titling Logic

	Working with Actions
	Pre-Installed Actions
	User Actions
	Auto Installation of Actions into GUI

	Working with Icons
	IconThemes

	Working with Dialogs
	Using DialogRequests
	DialogListeners
	DialogRequestHandlers
	Why Have Managed Dialogs?
	Presentation Example
	Message Dialogs
	File Dialogs
	User Dialogs
	Legacy Dialogs

	Working with Menus
	MenuBarCustomizer
	General Menu Options
	A Note about Edit Menus
	Managed UI Menus
	OpenWindows

	Working with ToolBars
	General ToolBar Options
	ToolbarCustomizer

	ApplicationFeature

	Making a Document-Centric Application
	A Plain Text Editor Application
	Working with FileFormats
	Provided FileFormats
	FileFormat Semantics
	FileFormat Conversions
	Other FileFormat Uses

	CommandLine File Loading
	Working with Document-Centric Actions
	File System Mediation
	FileSystemMediator
	FileSystemResponseHandler

	Recent Documents

	Integration with Other JIDE Products
	JIDE Docking Framework
	Normal Docking
	MVC Docking

	JIDE Action Framework
	DocumentPane
	JIDE Stock Icons

	Making a Console Application
	ConsoleApplication
	ConsoleApplication Constructors
	Managing Data

	CommandMap
	ConsoleCommands
	Built-In Commands
	Creating ConsoleCommands
	Command Arguments

	File Handling
	ConsoleViewFactory
	Using ConsoleView
	Reading from the Console
	Console Dialogs
	Writing to the Console
	ConsoleFilter

	ConsoleViewListener
	CommandString
	Command Validation
	Type Conversion

	Console Help
	Console Printing
	ConsoleApplication - About

	ObjectFormat
	Implementing Custom Pattern Syntax

	Migrating To JIDE Desktop Application Framework
	AWT and SWT Applications
	Swing Applications
	Application Entry Point
	Migrating Data
	Setting Look and Feel
	Migrating Window Code
	Migrating Actions
	Migrating Menu Code
	Migrating ToolBar Code
	Migrating Printing Code
	Migrating the Help System
	Migrating Preferences
	Migrating About Window
	Migrating Startup and Shutdown Functionality

	JSR-296 Compatibility
	Internationalization Support

